Skip to main content
Log in

A Simple Scheme for Volume-Preserving Motion by Mean Curvature

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we present a diffusion-generated approach for evolving volume-preserving motion by mean curvature. Our algorithm alternately diffuses and sharpens characteristic functions to produce a normal velocity which equals the mean curvature minus the average mean curvature. This simple algorithm naturally treats topological mergings and breakings and can be made very fast even when the volume constraint is enforced to double precision (or more). Two dimensional numerical studies are provided to demonstrate the convergence of the method for smooth and nonsmooth problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles, G., and Georgelin, C. (1995). A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM Journal on Numerical Analysis 32(2), 484-500.

    Google Scholar 

  2. Bronsard, L., and Stoth, B. (1997). Volume preserving mean curvature flow as a limit of a nonlocal Ginzburg–Landau equation. SIAM J. Math. Anal. 28(4), 769-807.

    Google Scholar 

  3. Bronsard, L., and Wetton, B. T. R. (1993). A numerical method for tracking curve networks moving with curvature motion. J. Comput. Phys. 120(1), 66-87.

    Google Scholar 

  4. Chopp, D. L. (1994). Computation of self-similar solutions for mean curvature flow. Experimental Mathematics 3(1), 1-15.

    Google Scholar 

  5. Evans, L. C. (1993). Convergence of an algorithm for mean curvature motion. Indiana University Mathematics Journal 42, 553-557.

    Google Scholar 

  6. Foisy, J., Alfaro, M., Brock, J., Hodges, N., and Zimba, J. (1993). The standard double soap bubble in r2 uniquely minimizes perimeter. Pacific J. Math. 159(1), 47-59.

    Google Scholar 

  7. Hass, J., Hutchings, M., and Schlafly, R. (1995). The double bubble conjecture. Electron. Res. Announc. Amer. Math. Soc. 1(1), 98-102.

    Google Scholar 

  8. Ishii, H. (1995). A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature. In Damlamian, A., Spruck, J., and Visintin, A. (eds.), Curvature Flows and Related Topics, Gakkôtosho, Tokyo, pp. 111-127.

    Google Scholar 

  9. Ishii, H., Pires, G. E., and Souganidis, P. E. (1996). Threshold dynamics type schemes for propagating fronts, TMU Mathematics Preprint Series, Vol. 4.

  10. Mascarenhas, P. (1992). Diffusion Generated Motion by Mean Curvature, CAM Report 92-33, University of California, Dept. of Math., Los Angeles.

    Google Scholar 

  11. Merriman, B., Bence, J., and Osher, S. (1992). Diffusion generated motion by mean curvature. In Taylor, J. E. (ed.), Computational Crystal Growers Workshop, Amer. Math. Soc., Providence, Rhode Island, pp. 73-83. Also available as UCLA CAM Report 92-18, April 1992.

    Google Scholar 

  12. Merriman, B., Bence, J., and Osher, S. (1994). Motion of multiple junctions: A level set approach. J. Comput. Phys. 112(2), 334-363.

    Google Scholar 

  13. Nochetto, R. H., Paolini, M., and Verdi, C. (1996). A dynamic mesh algorithm for curvature dependent evolving interfaces. J. Comput. Phys. 123(2), 296-310.

    Google Scholar 

  14. Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12-49.

    Google Scholar 

  15. Peng, D., Merriman, B., Osher, S., Zhao, H.-K., and Kang, M. J. (1999). A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410-438.

    Google Scholar 

  16. Rubinstein, J., and Sternberg, P. (1992). Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math. 48, 248-264.

    Google Scholar 

  17. Ruuth, S. J. (1996). Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature, Ph.D. thesis, University of British Columbia, Vancouver, Canada.

    Google Scholar 

  18. Ruuth, S. J. (1998). A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145, 166-192.

    Google Scholar 

  19. Ruuth, S. J. (1998). Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144, 603-625.

    Google Scholar 

  20. Ruuth, S. J., and Merriman, B. (2000). Convolution generated motion and generalized Huygens’ principles for interface motion. SIAM J. Appl. Math. 60(3), 868-890.

    Google Scholar 

  21. Ruuth, S. J., and Merriman, B. (2001). Convolution-thresholding methods for interface motion. J. Comput. Phys. 169, 678-707.

    Google Scholar 

  22. Ruuth, S. J., Merriman, B., and Osher, S. (1999). Convolution generated motion as a link between cellular automata and continuum pattern dynamics. J. Comput. Phys. 151, 836-861.

    Google Scholar 

  23. Sussman, M., and Uto, S. (1998). A Computational Study of the Spreading of Oil Underneath a Sheet of Ice, CAM Report 98-32, University of California, Dept. of Math, Los Angeles.

    Google Scholar 

  24. Zhao, H.-K., Merriman, B., Osher, S., and Wang, L. (1998). Capturing the behavior of bubbles and drops using the variational level set approach. J. Comput. Phys. 143, 495-518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruuth, S.J., Wetton, B.T.R. A Simple Scheme for Volume-Preserving Motion by Mean Curvature. Journal of Scientific Computing 19, 373–384 (2003). https://doi.org/10.1023/A:1025368328471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025368328471

Navigation