Skip to main content
Log in

Improved mapping of protein binding sites

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Computational mapping methods place molecular probes – small molecules or functional groups – on a protein surface in order to identify the most favorable binding positions by calculating an interaction potential. Mapping is an important step in a number of flexible docking and drug design algorithms. We have developed improved algorithms for mapping protein surfaces using small organic molecules as molecular probes. The calculations reproduce the binding of eight organic solvents to lysozyme as observed by NMR, as well as the binding of four solvents to thermolysin, in good agreement with x-ray data. Application to protein tyrosine phosphatase 1B shows that the information provided by the mapping can be very useful for drug design. We also studied why the organic solvents bind in the active site of proteins, in spite of the availability of alternative pockets that can very tightly accommodate some of the probes. A possible explanation is that the binding in the relatively large active site retains a number of rotational states, and hence leads to smaller entropy loss than the binding elsewhere else. Indeed, the mapping reveals that the clusters of the ligand molecules in the protein's active site contain different rotational-translational conformers, which represent different local minima of the free energy surface. In order to study the transitions between different conformers, reaction path and molecular dynamics calculations were performed. Results show that most of the rotational states are separated by low free energy barriers at the experimental temperature, and hence the entropy of binding in the active site is expected to be high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewing, T.J.A and Kuntz, I.D., J. Comp. Chem., 18 (1997) 1175-1189.

    Google Scholar 

  2. Goodford P.J., J. Med. Chem., 28 (1985) 849-875.

    Google Scholar 

  3. Lawrence M.C. and Davis P.C., Proteins 12 (1992) 31-41.

    Google Scholar 

  4. Bohm H.J., J. Comp.-Aid. Mol. Des., 6 (1992) 131-147.

    Google Scholar 

  5. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins, 19 (1994) 199-221.

    Google Scholar 

  6. Miranker, A. and Karplus, M., Proteins: Struc. Func. Gen., 11 (1991) 29-34.

    Google Scholar 

  7. Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142-2167.

    Google Scholar 

  8. Evensen, E., Joseph-McCarthy, D. and Karplus, M. MCSS version 2.1, Harvard University, Cambridge, MA, USA, 1997.

    Google Scholar 

  9. Mattos, C. and Ringe, D. Nat. Biotech., 14 (1996) 595-599.

    Google Scholar 

  10. Allen, K.N., Bellamacina, C.R., Ding, X., Jeffery, C.J., Mattos, C., Petsko, G.A. and Ringe, D., J. Phys. Chem., 100 (1996) 2605-2611.

    Google Scholar 

  11. Mattos, C. and Ringe, D., Curr. Opin. Struct. Biol., 11 (2001) 761-764.

    Google Scholar 

  12. English, A.C., Done, S.H., Caves, L.S., Groom C.R. and Hubbard, R.E., Proteins, 37 (1999) 628-640.

    Google Scholar 

  13. English, A.C., Groom C.R. and Hubbard, R.E., Protein Eng., 14 (2001) 47-59.

    Google Scholar 

  14. Liepinsh, E. and Otting, G., Nat. Biotech., 15 (1997) 264-268.

    Google Scholar 

  15. Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W., Science, 274 (1996) 1531-1534.

    Google Scholar 

  16. Pellechchia, M., Sem, D.S. and Wutrich, K., Nature Reviews, 1 (2002) 211-219.

    Google Scholar 

  17. Knubovets, T., Osterhout, J.J. and Klibanov, A.M., Biotechnol. Bioeng., 63 (1999) 242-248.

    Google Scholar 

  18. Erlanson, D.A., Braisted, A.C., Raphael, D.L., Randal, M., Stroud, R.M., Gordon, E.M. and Wells, J.A., Proc. Natl. Acad. Sci. USA, 97 (2000) 9367-9372.

    Google Scholar 

  19. Moore, J.M., Curr. Opin. Biotech., 10 (1999) 54-58.

    Google Scholar 

  20. Dennis, S., Kortvelyesi, T. and Vajda, S., Proc. Natl. Acad. Sci. USA, 99 (2002) 4290-4295.

    Google Scholar 

  21. Kortvelyesi, T., Dennis, S., Silberstein, M., Brown, L. III and Vajda, S., Proteins, 51 (2003) 340-351.

    Google Scholar 

  22. Dennis, S., Camacho, C.J. and Vajda, S., In: Optimization in Computational Chemistry and Molecular Biology, Floudas, C. A., Pardalos, C., Eds. Kluwer Academic, Norwell, MA, USA; 2000, 243 p.

    Google Scholar 

  23. Vajda, S., Weng, Z., Rosenfeld, R. and DeLisi, C., Biochemistry, 33 (1994) 13977-13987.

    Google Scholar 

  24. Weng, Z., Vajda, S. and DeLisi, C. Protein Sci., 5 (1996) 614-626.

    Google Scholar 

  25. Jackson, R.M. and Sternberg, M.J.E., J. Mol. Biol., 250 (1995) 258-275.

    Google Scholar 

  26. Krystek, S., Stouch, T. and Novotny, J., J. Mol. Biol., 234 (1993) 661-179.

    Google Scholar 

  27. Gilson, M.K. and Honig, B., Proteins, 4 (1988) 7-18.

    Google Scholar 

  28. Honig, B. and Nicholls, A., Science, 268 (1995) 1144-1149.

    Google Scholar 

  29. Bruccoleri, R.E., J. Comp. Chem., 14 (1993) 1417-1422.

    Google Scholar 

  30. Zhang, C., Vasmatzis, G., Cornette, J.L. and DeLisi, C., J. Mol. Biol., 267 (1996) 707-726.

    Google Scholar 

  31. Miyazawa, S. and Jernigan, R., Macromolecules, 18 (1985) 534-552.

    Google Scholar 

  32. Schaefer, M. and Karplus, M., J. Phys. Chem., 100 (1996) 1578-1599.

    Google Scholar 

  33. Brooks, B.R., Bruccoleri, R.E., Olafson, B., States, D.J., Swaminathan, S. and Karplus, M., J. Comp. Chem., 4 (1983) 197-214.

    Google Scholar 

  34. Fischer, S. and Karplus, M., Chem. Phys. Letters, 194 (1992) 252-262.

    Google Scholar 

  35. Berendsen, H.J.C., van der Spoel, D. and van Drunen, R., Comp. Phys. Comm., 91 (1995) 43-56.

    Google Scholar 

  36. Lindahl, E., Hess, B. and van der Spoel, D., J. Mol. Mod., 7 (2001) 306-317.

    Google Scholar 

  37. Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.D.E.M., J. Comp. Chem., 18 (1997) 1463-1472.

    Google Scholar 

  38. Burke, T.R. and Zhang, Jr. Z.-Y., Biopolymers, 47 (1998) 225-241.

    Google Scholar 

  39. Sarmiento, M., Wu, L., Keng, Y.F., Song, L., Luo, Z., Huang, Z., Wu, G.Z., Yuan, A.K. and Zhang, Z.Y., J. Med. Chem., 43 (2000) 146-155.

    Google Scholar 

  40. Doman, T.N., McGovern, S.L., Witherbee, B.J., Kasten, T.P., Kurumbail, R., Stallings, W.C., Connolly, D.T. and Shoichet, B.K., J. Med. Chem., 45 (2002) 2213-2221.

    Google Scholar 

  41. Brady Jr., G.P. and Stouten, P.F.W., J. Comp. Aided Mol. Des., 14 (2000) 383-401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortvelyesi, T., Silberstein, M., Dennis, S. et al. Improved mapping of protein binding sites. J Comput Aided Mol Des 17, 173–186 (2003). https://doi.org/10.1023/A:1025369923311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025369923311