Abstract
Computational mapping methods place molecular probes – small molecules or functional groups – on a protein surface in order to identify the most favorable binding positions by calculating an interaction potential. Mapping is an important step in a number of flexible docking and drug design algorithms. We have developed improved algorithms for mapping protein surfaces using small organic molecules as molecular probes. The calculations reproduce the binding of eight organic solvents to lysozyme as observed by NMR, as well as the binding of four solvents to thermolysin, in good agreement with x-ray data. Application to protein tyrosine phosphatase 1B shows that the information provided by the mapping can be very useful for drug design. We also studied why the organic solvents bind in the active site of proteins, in spite of the availability of alternative pockets that can very tightly accommodate some of the probes. A possible explanation is that the binding in the relatively large active site retains a number of rotational states, and hence leads to smaller entropy loss than the binding elsewhere else. Indeed, the mapping reveals that the clusters of the ligand molecules in the protein's active site contain different rotational-translational conformers, which represent different local minima of the free energy surface. In order to study the transitions between different conformers, reaction path and molecular dynamics calculations were performed. Results show that most of the rotational states are separated by low free energy barriers at the experimental temperature, and hence the entropy of binding in the active site is expected to be high.
Similar content being viewed by others
References
Ewing, T.J.A and Kuntz, I.D., J. Comp. Chem., 18 (1997) 1175-1189.
Goodford P.J., J. Med. Chem., 28 (1985) 849-875.
Lawrence M.C. and Davis P.C., Proteins 12 (1992) 31-41.
Bohm H.J., J. Comp.-Aid. Mol. Des., 6 (1992) 131-147.
Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins, 19 (1994) 199-221.
Miranker, A. and Karplus, M., Proteins: Struc. Func. Gen., 11 (1991) 29-34.
Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142-2167.
Evensen, E., Joseph-McCarthy, D. and Karplus, M. MCSS version 2.1, Harvard University, Cambridge, MA, USA, 1997.
Mattos, C. and Ringe, D. Nat. Biotech., 14 (1996) 595-599.
Allen, K.N., Bellamacina, C.R., Ding, X., Jeffery, C.J., Mattos, C., Petsko, G.A. and Ringe, D., J. Phys. Chem., 100 (1996) 2605-2611.
Mattos, C. and Ringe, D., Curr. Opin. Struct. Biol., 11 (2001) 761-764.
English, A.C., Done, S.H., Caves, L.S., Groom C.R. and Hubbard, R.E., Proteins, 37 (1999) 628-640.
English, A.C., Groom C.R. and Hubbard, R.E., Protein Eng., 14 (2001) 47-59.
Liepinsh, E. and Otting, G., Nat. Biotech., 15 (1997) 264-268.
Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W., Science, 274 (1996) 1531-1534.
Pellechchia, M., Sem, D.S. and Wutrich, K., Nature Reviews, 1 (2002) 211-219.
Knubovets, T., Osterhout, J.J. and Klibanov, A.M., Biotechnol. Bioeng., 63 (1999) 242-248.
Erlanson, D.A., Braisted, A.C., Raphael, D.L., Randal, M., Stroud, R.M., Gordon, E.M. and Wells, J.A., Proc. Natl. Acad. Sci. USA, 97 (2000) 9367-9372.
Moore, J.M., Curr. Opin. Biotech., 10 (1999) 54-58.
Dennis, S., Kortvelyesi, T. and Vajda, S., Proc. Natl. Acad. Sci. USA, 99 (2002) 4290-4295.
Kortvelyesi, T., Dennis, S., Silberstein, M., Brown, L. III and Vajda, S., Proteins, 51 (2003) 340-351.
Dennis, S., Camacho, C.J. and Vajda, S., In: Optimization in Computational Chemistry and Molecular Biology, Floudas, C. A., Pardalos, C., Eds. Kluwer Academic, Norwell, MA, USA; 2000, 243 p.
Vajda, S., Weng, Z., Rosenfeld, R. and DeLisi, C., Biochemistry, 33 (1994) 13977-13987.
Weng, Z., Vajda, S. and DeLisi, C. Protein Sci., 5 (1996) 614-626.
Jackson, R.M. and Sternberg, M.J.E., J. Mol. Biol., 250 (1995) 258-275.
Krystek, S., Stouch, T. and Novotny, J., J. Mol. Biol., 234 (1993) 661-179.
Gilson, M.K. and Honig, B., Proteins, 4 (1988) 7-18.
Honig, B. and Nicholls, A., Science, 268 (1995) 1144-1149.
Bruccoleri, R.E., J. Comp. Chem., 14 (1993) 1417-1422.
Zhang, C., Vasmatzis, G., Cornette, J.L. and DeLisi, C., J. Mol. Biol., 267 (1996) 707-726.
Miyazawa, S. and Jernigan, R., Macromolecules, 18 (1985) 534-552.
Schaefer, M. and Karplus, M., J. Phys. Chem., 100 (1996) 1578-1599.
Brooks, B.R., Bruccoleri, R.E., Olafson, B., States, D.J., Swaminathan, S. and Karplus, M., J. Comp. Chem., 4 (1983) 197-214.
Fischer, S. and Karplus, M., Chem. Phys. Letters, 194 (1992) 252-262.
Berendsen, H.J.C., van der Spoel, D. and van Drunen, R., Comp. Phys. Comm., 91 (1995) 43-56.
Lindahl, E., Hess, B. and van der Spoel, D., J. Mol. Mod., 7 (2001) 306-317.
Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.D.E.M., J. Comp. Chem., 18 (1997) 1463-1472.
Burke, T.R. and Zhang, Jr. Z.-Y., Biopolymers, 47 (1998) 225-241.
Sarmiento, M., Wu, L., Keng, Y.F., Song, L., Luo, Z., Huang, Z., Wu, G.Z., Yuan, A.K. and Zhang, Z.Y., J. Med. Chem., 43 (2000) 146-155.
Doman, T.N., McGovern, S.L., Witherbee, B.J., Kasten, T.P., Kurumbail, R., Stallings, W.C., Connolly, D.T. and Shoichet, B.K., J. Med. Chem., 45 (2002) 2213-2221.
Brady Jr., G.P. and Stouten, P.F.W., J. Comp. Aided Mol. Des., 14 (2000) 383-401
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kortvelyesi, T., Silberstein, M., Dennis, S. et al. Improved mapping of protein binding sites. J Comput Aided Mol Des 17, 173–186 (2003). https://doi.org/10.1023/A:1025369923311
Issue Date:
DOI: https://doi.org/10.1023/A:1025369923311