Skip to main content
Log in

Upper Bounds on the Dual Distance of BCH(255, k)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

To obtain upper bounds on the distance of a binary linear code, many probabilistic algorithms have been proposed. The author presents a general variation to these algorithms, specific for cyclic codes, which is shown to be an improvement. As an example, the author optimizes Brouwer's algorithm to find the best upper bounds on the dual distance of BCH[255,k,d].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Augot, Newton's identities for minimum codewords of a family of alternant codes, Short Abstract in the Proceedings of IEEE ISIT 95 (1995).

  2. D. Augot and F. Levy-dit-Vehel, Bounds on the minimum distance of the duals of BCH codes, IEEE Trans. on Inf. Th., Vol. 42, No. 4, July (1996) pp. 1257–1260.

    Google Scholar 

  3. E. R. Berlekamp, Algebraic Coding Theory, New York, McGraw-Hill (1968).

    Google Scholar 

  4. A. M. Barg and I. I. Dumer, On computing the weight spectrum of cyclic codes, IEEE Trans. on Inf. Th., Vol. 38, No. 4, July (1992) pp. 1382–1386.

    Google Scholar 

  5. M. Becker and J. Cramwinckel, Implementation of an algorithm for the weight distribution of block codes, Modelleringcolloquium, Eindhoven Univ. Technology (1995).

  6. A. E. Brower and T. Verhoeff, An updated table of minimum distance bounds for binary linear codes, IEEE. Trans. on Inf. Th., Vol. 39, No. 2, March (1993) pp. 662–677.

    Google Scholar 

  7. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystemand to narrow-sense BCH codes of length 511, IEEE Trans. on Inf. Th., Vol. 44, No. 1, January (1998) pp. 367–378.

    Google Scholar 

  8. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J., Vol. 24, December (1957) pp. 37–41.

    Google Scholar 

  9. Y. Desaki, T. Fujiwara and T. Kasami, The weight distributions of extended binary primitive BCH codes of length 128, IEEE Trans. on Inf. Th., Vol. 43, No. 4, July (1997) pp. 1364–1371.

    Google Scholar 

  10. T. Fujiwara and T. Kasami, The weight distributions of (256, k) extended binary primitive BCH codes with k ≤ 63 and k ≥ 207. Technical Report of IEICE, IT97–46 (1997–09) (1997) pp. 29–33.

  11. S. M. Johnson, Improved asymptotic bounds for error correcting codes, IEEE Trans. on Inf. Th., Vol. 9, July (1963) pp. 198–205.

    Google Scholar 

  12. T. Kasami, T. Fujiwara and S. Lin, An approximation to the weight distribution of binary linear codes, IEEE Trans. on Inf. Th., Vol. 31, No. 6, November (1985) pp. 769–780.

    Google Scholar 

  13. T. Kasami and S. Lin, Some results on the minimum weight of BCH codes, IEEE Trans. on Inf. Th., Vol. 18, November (1972) pp. 824–825.

    Google Scholar 

  14. I. Krasikov and S. Litsyn, On the distance distribution of duals of BCH codes, IEEE Trans. on Inf. Th., Vol. 45, No. 1, January (1999) pp. 247–250.

    Google Scholar 

  15. T. Laihonen and S. Litsyn, On upper bounds for minimum distance and covering radius for nonbinary codes, Designs, Codes and Cryptography, Vol. 14, No. 1 (1998) pp. 71–80.

    Google Scholar 

  16. J. S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Trans. on Inf. Th., Vol. 34, No. 5, September (1988) pp. 1354–1359.

    Google Scholar 

  17. F. Levy-dit-Vehel, Bounds on the minimum distance of the duals of extended BCH codes, Appl. Alg. Eng. Comm. Comput., Vol. 6, No. 3 (1995) pp. 175–190.

    Google Scholar 

  18. S. Lin, An Introduction to Error-Correcting Codes, Englewood Cliffs, NJ, Prentice Hall (1970).

    Google Scholar 

  19. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland (1977).

  20. MAGMA web page: http://www.maths.usyd.edu.au:8000/u/magma/

  21. MEDICIS web page: http://www.medicis.polytechnique.fr

  22. O. Moreno and C. J. Moreno, The MacWilliams–Sloane conjecture on the tightness of the Carlitz– Uchiyama bound and the weights of duals of BCH codes, IEEE Trans. on Inf. Th., Vol. 40, No. 6, November (1994) pp. 1894–1907.

    Google Scholar 

  23. W. W. Peterson and E. J. Weldon, Jr., Error Correcting Codes, MIT Press (1972).

  24. M. Plotkin, Binary codes with specified minimum distance, IEEE Trans. on Inf. Th., Vol. 6, September (1960) pp. 445–450.

    Google Scholar 

  25. F. Rodier, On the spectra of the duals of binary BCH codes of designed distance delta = 9, IEEE Trans. on Inf. Th., Vol. 38, No. 2, March (1992) pp. 478–479.

    Google Scholar 

  26. M. Sala, Cyclic codes and Gröbner bases, to appear.

  27. M. Sala and A. Tamponi, A linear programming estimate of the weight distribution of BCH(255, k), IEEE Trans. on Inf. Th., Vol. 46, No. 6, September (2000) pp. 2235–2237.

    Google Scholar 

  28. M. Sala and F. Ponchio, A lower bound on the distance of cyclic codes, to appear.

  29. J. Stern, A method for finding codewords of small weight, Coding Theory and Applications, n. 388 in Lecture Notes in Computer Science, Springer Verlag (1989) pp. 106–113.

  30. N. Wax, An upper bound for error detecting and error correcting codes of finite length, IEEE Trans. on Inf. Th., Vol. 5, December (1959) pp. 168–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, M. Upper Bounds on the Dual Distance of BCH(255, k). Designs, Codes and Cryptography 30, 159–168 (2003). https://doi.org/10.1023/A:1025428720732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025428720732

Navigation