Skip to main content
Log in

QSAR Modeling of Genotoxicity on Non-congeneric Sets of Organic Compounds

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

A multi-linear (ML) and artificial neural network (ANN) approaches have been used to derive quantitativestructure-activity relationships (QSAR) between the genotoxicity (mutagenicity) and molecular structure of compounds by using large initial pools of descriptors. All derived models involve descriptors that describe possible structural factors influencing the mutagenicbehavior of organic compounds. Different quantum chemical characteristics of compounds have been successfully used together with conventional molecular descriptors. The connection between descriptors represented in the models and the mutagenic behavior ofcompounds is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agatonovic-Kustrin, S., Beresford, R. & Yusof A. P. M. (2001). Theoretically Derived Molecular Descriptors Important in Human Intestinal Absorption. J. Pharm. Biomed. Anal. 25: 227–237.

    Google Scholar 

  • Agatonovic-Kustrin, S., Ling L. H., Tham, S. Y. & Alany, R. G. (2002). Molecular Descriptors that Influence the Amount of Drugs Transfer into Human Breast Milk. J. Pharm. Biomed. Anal. 29: 103–119.

    Google Scholar 

  • Ames, B. N. (1979). Identifying Environmental Chemicals Causing Mutations and Cancer. Science 204: 587–593.

    Google Scholar 

  • Baker, J. (1986). An Algorithm for the Location of Transition States. J. Comput. Chem. 7: 385–395.

    Google Scholar 

  • Basak, S. C., Niemi, G. J. & Veith, G. D. (1990). Optimal Characterization of Structure for Prediction of Properties. J. Math. Chem. 4: 185–205.

    Google Scholar 

  • Benigni, R. & Giuliani, A. (1991). Mathematical Models for Exploring Different Aspects of Genotoxicity and Carcinogenic Databases. Environ. Health Perspect. 96: 81–84.

    Google Scholar 

  • Benigni, R. & Giuliani, A. (1996). Quantitative Structure-Activity Relationship (QSAR) Studies of Mutagens and Carcinogens. Med. Res. Rev. 16: 267–284.

    Google Scholar 

  • Benigni, R. & Richard, A. M. (1998). Quantitative Structure-Based Modelling Applied to Characterization and Prediction of Chemical Toxicity. METHODS 14: 264–276.

    Google Scholar 

  • Benigni, R., Giuliani, A., Franke, R. & Gruska, A. (2000). Quantitative Structure-Activity Relationships of Mutagenic and Carcinogenic Aromatic Amines. Chem. Rev. 100: 3697–3714.

    Google Scholar 

  • Bodor, N. & Buchwald, P. (1997). A Molecular Size Based Approach to Estimate Partition Properties for Organic Solutes. J. Phys. Chem. 101: 3404–3412.

    Google Scholar 

  • Bodor, N., Harget, A. & Huang, M.-J. (1991) Neural Network Studies. 1. Estimation of the Aqueous Solubility of Organic Compounds. J. Am. Chem. Soc. 28: 849–857.

    Google Scholar 

  • Brinn, M. W., Payne, M. P. & Walsh, P. T. (1993). Neural Network Prediction of Mutagenicity Using Structure-Property Relationships. Chem. Eng. Res. Des. 71: 337–339.

    Google Scholar 

  • Buchwald, P. & Bodor, N. (1998). Octanol-Water Partition: Searching for Predictive Models. Curr. Med. Chem. 5: 353–380.

    Google Scholar 

  • Cornin, M. T. D. & Dearden, J. C. (1995). QSAR in Toxicology. 3. Prediction of Chronic Toxicities. Quant. Struct.-Act. Relat. 14: 329–334.

    Google Scholar 

  • Debnath, A. K., Compadre, R. L. L., Debnath, D., Shusterman, A. J. & Hansch, C. (1991). Structure-Activity Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation with Molecular Orbital Energies and Hydrophobicity. J. Med. Chem. 34: 786–797.

    Google Scholar 

  • Debnath, A. K., Lopez de Compadre, R. L., Shusterman, A. J. & Hansch, C. (1992). Quantitative Structure-Activity Relationship Investigation of the Role of Hydrophobicity in Regulating Mutagenicity in the Ames Test: 2. Mutagenicity of Aromatic and Heteroaromatic Nitro Compounds in Salmonella Typhimurium TA100. Environ. Mol. Mutagen. 19: 53–70.

    Google Scholar 

  • Dednath, A. K., Hanch, C., Kim, K. H. & Martin, Y. C. (1993). Mechanistic Interpretation of the Genotoxicity of Nitrofurans (Antibacterial Agents) Using Quantitativ Structure-Activity Relationships and Comparative Molecular Field Analysis. J. Med. Chem. 36: 1007–1016.

    Google Scholar 

  • Debnath, A. K., Shusterman, A. J., Lopez de Compadre, R. L. & Hansch, C. (1994). The Importance of the Hydrophobic Interaction in the Mutagenicity of Organic Compounds. Mut. Res. 305: 63–73.

    Google Scholar 

  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 107: 3902–3909.

    Google Scholar 

  • Draper, N. R. & Smith, H. (1981). Applied Regression Analysis. New York: Wiley.

    Google Scholar 

  • Edward, J. T. (1998). Calculation of Octanol-Water Partition Coefficients of Organic Solutes from Their Molecular Volumes. Can. J. Chem. 76: 1294–1303.

    Google Scholar 

  • Enslein, K., Gombar, V. K. & Blake, B.W. (1994). Use of SAR in Computer-Assisted Prediction of Carcinogenicity and Mutagenicity of Chemicals by the TOPCAT Program. Mut. Res. 305: 47–61.

    Google Scholar 

  • Gao, H., Lajiness, M. S. & Van Drie J. (2002). Enhancement of Binary QSAR Analysis by a GA-Based Variable Selection Method. J. Mol. Graph. & Mod 20: 259–268.

    Google Scholar 

  • Garg, A. Bhat, K. L. & Bock, C. W. (2002) Mutagenicity of Aminoazobenzene Dyes and Related Structures: A QSAR/QSAR Investigation. Dyes and Pigments 55: 35–52.

    Google Scholar 

  • Gini, G., Lorenzini, M., Benfenati, E., Grasso, P. & Bruschi, M. (1999). Predictive Carcinogenicity: A Model for Aromatic Compounds, with Nitrogen-Containing Substituents, Based on Molecular Descriptors Using an Artificial Neural Network. J. Chem. Inf. Comput. Sci. 39: 1076–1080.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Goll, E. S. & Jurs, P. C. (1999). Prediction of the Normal Boiling Points of Organic Compounds from Molecular Structures with a Computational Neural Network Model. J. Chem. Inf. Comput. Sci. 39: 974–983.

    Google Scholar 

  • Hansch, C. & Fujita, T. (1964). ρ-σ-π analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 86: 1616–1626.

    Google Scholar 

  • Hansch, C. & Leo, A. (1995). Exploring QSAR, Fundamentals and Applications in Chemistry and Biology, Chapters 6 & 11. Washington, DC: ACS.

    Google Scholar 

  • Hatch, F. T. & Colvin, M. E. (1997). Quantitative Structure-Activity (QSAR) Relationships of Mutagenic Aromatic and Heterocyclic Amines. Mut. Res. 376: 87–96.

    Google Scholar 

  • Hooberman, B. H., Chakraborty, P. K. & Sinsheimer, J. E. (1993). Quantitative Structure-Activity Relationships for the Mutagenicity of Propylene Oxides with Salmonella. Mut. Res. 299: 85–93.

    Google Scholar 

  • Huuskonen, J. J., Livingstone D. J. & Villa, A. E. P. (2000). Neural Network Modeling for Estimation of Partition Coefficients Based on Atom-Type Electrotopological State Indices J. Chem. Inf. Comp. Sci. 38: 947–955.

    Google Scholar 

  • Karelson, M., Lobanov, V. S. & Katritzky, A. R. (1996). Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 96: 1027–1043.

    Google Scholar 

  • Karelson, M. (2000a). Molecular Descriptors in QSAR/QSPR, 430. New York: John Wiley & Sons.

    Google Scholar 

  • Karelson, M., Sild, S. & Maran, U. (2000b). Non-Linear QSAR Treatment of Genotoxicity. Mol. Simulat. 24: 229–242.

    Google Scholar 

  • Katritzky, A. R., Lobanov, V. S. & Karelson, M. (1994) CODESSA: Reference Manual (version 2.0). Gainesville, Florida.

  • Katritzky, A. R., Lobanov, V. S. & Karelson, M. (1995). QSPR: The Correlation and Quantitative Prediction of Chemical and Physical Properties from Structure. Chem. Soc. Rev. 24: 279–287.

    Google Scholar 

  • Katritzky, A. R., Mu, L., Lobanov, V. S. & Karelson, M. (1996). Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and Test Set of 9 Simple Inorganics. J. Phys. Chem. 100: 10400–10407.

    Google Scholar 

  • Kier, L. B. & Hall, L. H. (1976). Molecular Connectivity in Chemistry and Drug Reasearch. New York: Academic Press Inc.

    Google Scholar 

  • Kier, L. B. (1980a). Use of Molecular Negentropy to Encode Structure Governing Biological Activity. J. Pharm. Sci. 69: 807–810.

    Google Scholar 

  • Kier, L. B. (1990). Indexes ofMolecular Shape from Chemical Graphs. In Rouvray, D. H. (ed.) Computational Chemical Graph Theory, 152–174. New York: Nova Science Publishers.

    Google Scholar 

  • Klaassen, C. D. (ed.) (1995). Casarett and Doull's Toxicology: The Basic Science of Poisons, 5th ed.,, Chapers 2, 8 and 9. New York: McGraw-Hill.

    Google Scholar 

  • Klopman, G. & Rosenkranz, H. S. (1994). Approaches to SAR in Carcinogenesis and Mutagenesis. Prediction of Carcinogenicicty/Mutagenicity Using MULTI-CASE. Mut. Res. 305: 33–46.

    Google Scholar 

  • Kovalishyn, V. V., Tetko, I. V., Luik, A. I., Kholodovych, V. V., Villa, A. E. P. & Livingstone D. J. (1998). Neural Network Studies. 3. Variable Selection in the Cascade-Correlation Learning Architecture. J. Chem. Inf. Comp. Sci. 38: 651–659.

    Google Scholar 

  • Kurtz, H. A., Stewart, J. J. P. & Dieter, K. M. (1990). Calculation of the Nonlinear Optical Properties of Molecules. J. Comput. Chem. 11: 82–87.

    Google Scholar 

  • Maran, U., Karleson, M. & Katritzky, A. R. (1999). A Comprehensive QSAR Treatment of the Genotoxicity of Heteroaromatic Amines. Quant. Struct.-Act. Relat. 18: 3–10.

    Google Scholar 

  • McCann, J. & Ames, B. N. (1977). The Salmonella/Microsome Mutagenicity Test: Predictive Value of Animal Carcinogenicity. In Hiatt, H. H., Watson, J. D. & Winsten, J. A. (eds.) Origins of Human Cancer: Book C, Human Risk Assessment, 1431–1450. Cold Spring Harbor Laboratory.

  • Miller, J. A. & Miller, E. C. (1997). Ultimate Chemical Carcinogens as Reactive Mutagenic Electrophiles. In Hiatt, W. & Winstein (eds.) Origins of Human Concerns, 605–627. Cold Spring Harbor, NY: Laboratory Press.

    Google Scholar 

  • Mitchell, B E. & Jurs, P. C. (1997) Prediction of Autoignition Temperatures of Organic Compounds from Molecular Structure. J. Chem. Inf. Comput. Sci. 37: 538–547.

    Google Scholar 

  • Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.

    Google Scholar 

  • Patankar, S. J. & Jurs, P. C. (2000). Prediction of IC50 Values for ACAT Inhibitors from Molecular Structure. J. Chem. Inf. Comput. Sci. 40: 706–723.

    Google Scholar 

  • PCMODEL (1992). Molecular Modelling Package. Bloomington: Serena Software.

    Google Scholar 

  • Poso, A., Wright, A. & Gynther, J. (1995). An Empirical and Theoretical Study on Mechanism of Mutagenic Activity of Hydrazine Compounds. Mut. Res. 332: 63–71.

    Google Scholar 

  • Pullman, A. & Pullman, B. (1955). Electronic Structure and Carcinogenic Cctivity of Some Aromatic Molecules. Adv. Cancer Res. 3: 117–169.

    Google Scholar 

  • Richard, A. M. (1994). Application of SAR Methods to Non-congeneric Data Bases Associated With Carcinogenicity and Mutagenicity: Issues and Approaches. Mut. Res. 305: 73–97.

    Google Scholar 

  • Rogers, D. & Hopfinger, A. J. (1994). Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 34: 854–866.

    Google Scholar 

  • Roy, A. B., Basak, S. C., Harriss, D. K. & Magnuson, V. R. (1983). Neighborhood Complexities and Symmetry of Chemical Graphs and Their Biological Applications. In Avula, X. J. R. Kalman, R. E. Liapis, A. I. & Rodin, E. Y. (eds.) Mathematical Modelling in Science and Techiology, 745–750. New York: Pergamon Press.

    Google Scholar 

  • Sild, S. & Karelson, M. (2002). A General QSPR Treatment for Dielectric Constants of Organic Compounds. J. Chem. Inf. Comp. Sci. 42: 360–367.

    Google Scholar 

  • So, S.-S., van Helden, S. P., van Geerestein, V. J. & Karplus, M. (2000). Quantitative Structure-Activity Relationship Studies of Progesterone Receptor Binding Steroids. J. Chem. Inf. Comput. Sci. 40: 762–772.

    Google Scholar 

  • Soderman, J. V. (1982). CRC Handbook of Identified Carcinogens and Noncarcinogens: Carcinogenicity and Mutagenicity Database. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Somol, P. Pudil, Novovièová, J. & Paclík, P. (1999). Adaptive Floating Search Methods in Feature Selection. Pat. Rec. Lett. 20: 1157–1163.

    Google Scholar 

  • Stanton, D. T. & Jurs, P. C. (1990). Development and Use of Charged Partial Surface Area Structural Descriptors in Computer-Assisted Quantitative Structure-Property Realtionship Studies. Anal. Chem. 62: 2323–2329.

    Google Scholar 

  • Stewart, J. J. P. (1989). MOPAC Program Package. QCPE, No. 455.

  • Stouch, T. R. & Jurs, P. C. (1985). Computer-Assisted Studies of Molecular Structure and Genotoxic Activity by Pattern Recognition Techniques. Environ. Health Perspect. 61: 329–345.

    Google Scholar 

  • Tetko, I. V., Villa, A. E. P. & Livingstone, D. J. (1996). Neural Network Studies. 2. Variable Selection. J. Chem. Inf. Comp. Sci. 36: 794–803.

    Google Scholar 

  • Tuppurainen, K. (1994). QSAR Approach to Molecular Mutagenicity. A Survey and Case Study: MX Compounds. J. Mol. Struct. (Theochem) 306: 49–56.

    Google Scholar 

  • Viswanadhan, V. N., Mueller, G. A., Basak, S. C. & Weinstein, J. N. (2001). Comparison of a Neural Net-Based QSAR Algorithm (PCANN) with Hologram-and Multiple Linear Regression-Based QSAR Approaches: Application to 1,4-dihydropyridine Based Calcium Channel Antagonists. J. Chem. Inf. Comp. Sci. 41: 505–511.

    Google Scholar 

  • Vračcko, M. (1997). A Study of Structure-Carcinogenic Potency Relationship with Artificial Neural Networks. The Using of Descriptors Related to Geometrical and Electronic Structures. J. Chem. Inf. Comput. Sci. 37: 1037–1043.

    Google Scholar 

  • Walczak, B. & Wegscheider, W. (1993). Non-linear Modeling of Chemical Data by Combinations of Linear and Neural Net Methods. Anal. Chim. Acta 283: 508–517.

    Google Scholar 

  • Weast, R. C. (ed.) (1974). Handbook of Chemistry and Physics, F-112. Cleveland OH: CRC Press.

    Google Scholar 

  • Zefirov, N. S., Kirpichenok, M. A., Izmailov, F. F. & Trofimov, M. I. (1987). Scheme for the Calculation of the Electronegativities of Atoms in a Molecule in the Framework of Sanderson's Principle. Dokl. Akad. Nauk SSSR 296: 883–887.

    Google Scholar 

  • Zupan, J. & Gasteiger, J. (1993). Neural Networks for Chemists: An Introduction. VCH.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uko Maran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maran, U., Slid, S. QSAR Modeling of Genotoxicity on Non-congeneric Sets of Organic Compounds. Artificial Intelligence Review 20, 13–38 (2003). https://doi.org/10.1023/A:1026084514236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026084514236

Navigation