Abstract
The aim of this paper is to illustrate how a Plausibility Description Logic, called DL P , can be exploited for reasoning about information sources characterized by heterogeneous data representation formats. The paper first introduces DL P syntax and semantics. Then, a DL P -based approach is illustrated for inferring complex knowledge patterns from information sources being heterogeneous in their formats and structure degrees. Finally, it is described how inferred knowledge might be taken advantage of for constructing user profiles to be exploited in various application scenarios. Among these, that of improving the quality of Web search tools is described in detail.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
S. Amarger, D. Dubois and H. Prade, Constraint propagation with imprecise conditional probabilities, in: Proc. of Conference on Uncertainty in Artificial Intelligence (UAI'91) (Morgan Kaufmann, Los Angeles, CA, 1991) pp. 26–34.
M. Balabanovic, Exploring versus exploiting when learning user models for text recommendation, User Modeling and User-Adapted Interaction 8(1–2) (1998) 71–102.
C. Basu, H. Hirsh and W. Cohen, Recommendation as classification: Using social and content-based information in recommendation, in: Proc. of Fifteenth National Conference on Artificial Intelligence (AAAI'98), Madison, WI (AAAI Press/The MIT Press, 1998) pp. 714–720.
S. Bergamaschi, S. Castano and M. Vincini, Semantic integration of semistructured and structured data sources, ACM SIGMOD Record 28(1) (1999) 54–59.
D. Billsus and M. Pazzani, A hybrid user model for news stories, in: Proc. of the Seventh International Conference on User Modeling (UM'99), Banff, Canada, Lecture Notes in Computer Science, Vol. 1407 (Springer, 1999) pp. 99–108.
A. Bonifati, L. Palopoli, D. Saccà and D. Ursino, Automatic extraction of database scheme semantic properties using knowledge discovery techniques, Journal of Integrated Design and Process Science 3(1) (1999) 55–78.
D. Calvanese, G. De Giacomo and M. Lenzerini, Representing and reasoning on XML documents: a description logic approach, Journal of Logic and Computation 9(3) (1999) 295–318.
D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Source integration in data warehousing, in: Proc. of Workshop on Data Warehouse Design and OLAP Technology, Wien, Austria (IEEE Computer Society, 1998) pp. 192–197.
S. Castano and V. De Antonellis, Semantic dictionary design for database interoperability, in: Proc. of International Conference on Data Engineering (ICDE'97), Birmingham, UK (IEEE Computer Society, 1997) pp. 43–54.
T. Catarci and M. Lenzerini, Representing and using interschema knowledge in cooperative information systems, Journal of Intelligent and Cooperative Information Systems 2(4) (1993) 375–398.
J. Chen and S. Kundu, A sound and complete fuzzy logic system using Zadeh's implication operator, in: Proc. of International Syposium on Methodologies for Intelligent Systems (ISMIS'96), Zakopane, Poland, Lecture Notes in Artificial Intelligence, Vol. 1079 (Springer, 1996) pp. 233–242.
B.C. Chiu and G. Webb, Using decision trees for agent modeling: Improving prediction performance, User Modeling and User Adapted Interaction 8(1–2) (1998) 131–152.
S. Cluet, C. Delobel, J. Simeon and K. Smaga, Your mediators need data conversion, in: Proc. of International Conference on Management of Data (SIGMOD 1998), Seattle, WA (ACM Press, 1998) pp. 177–188.
V. Crescenzi, G. Mecca and P. Merialdo, Roadrunner: Towards automatic data extraction from large web sites, in: Proc. of International Conference on Very Large Data Bases (VLDB 2001), Roma, Italy (Morgan Kaufmann, 2001) pp. 109–118.
R.M. Da Silva, A.E.C. Pereira and M.A. Netto, A system of knowledge representation based in formulae of predicate calculus whose variables are annotated by expressions of a “fuzzy” terminological logic, in: Proc. of International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'94), Paris, France, Lecture Notes in Computer Science, Vol. 945 (Springer, 1994) pp. 409–417.
A. Doan, P. Domingos and A. Halevy, Reconciling schemas of disparate data sources: A machine-learning approach, in: Proc. of International Conference on Management of Data (SIGMOD 2001), Santa Barbara, CA (ACM Press, 2001) pp. 509–520.
D. Dubois and H. Prade, Can we enforce full compositionality in uncertainty calculi? in: Proc. of International Conference on Artificial Intelligence (AAAI'94), Seattle, WA (AAAI Press, 1994) pp. 149–154.
P. Fankhauser, M. Kracker and E.J. Neuhold, Semantic vs. structural resemblance of classes, ACM SIGMOD Record 20(4) (1991) 59–63.
A.M. Frisch and P. Haddaway, Anytime deduction for probabilistic logic, Artificial Intelligence 69(1–2) (1994) 93–122.
R. Giugno and T. Lukasiewicz. \({\mathcal{P}}\)-\({\mathcal{S}}{\mathcal{H}}{\mathcal{O}}{\mathcal{Q}}\)(D): A probabilistic extension of \({\mathcal{S}}{\mathcal{H}}{\mathcal{O}}{\mathcal{Q}}\)(D) for probabilistic ontologies in the semantic web, in: Proc. of European Conference on Logics in artificial Intelligence (JELIA'02), Cosenza, Italy, Lecture Notes in Computer Science, Vol. 2424 (Springer, 2002) pp. 86–97.
P.J. Gmytrasiewicz, S. Noh and T. Kellog, Bayesian update of recursive agent models, User Modeling and User-Adapted Interaction 8(1–2) (1998) 49–69.
F. Goasdoue, V. Lattes and M.C. Rousset, The use of CARIN language and algorithms for information integration: the picsel systems, International Journal of Cooperative Information Systems 9(4) (2000) 383–401.
J. Heinsohn, Probabilistic description logics, in: Proc. of Conference on Uncertainty in Artificial Intelligence (UAI'94), Seattle, WA (Morgan Kaufmann, 1994) pp. 311–318.
I. Horrocks, DAML+OIL: A reason-able web ontology language, in: Proc. of International Conference on Extending Database Technology (EDBT'02), Prague, Czech Republic, Lecture Notes in Computer Science, Vol. 2287 (Springer, 2002) pp. 2–13.
E. Horvitz, Continual computation policies for utility-directed prefetching, in: Proc. of the ACM Conference on Information and Knowledge Management (CIKM'98), Bethesda, MD (ACM Press, 1998) pp. 175–184.
E. Horvitz, J. Breese, D. Heckerman, D. Hovel and K. Rommelse, The Lumiere project: Bayesian user modeling for inferring the goals and needs of software users, in: Proc. of the Conference on Uncertainty in Artificial Intelligence, Madison, WI (1998) pp. 256–265.
M. Jaeger, Probabilistic reasoning in terminological logics, in: Proc. of Conference on Principles of Knowledge Representation and Reasoning (KR'94), Bonn, Germany (Morgan Kaufmann, 1994) pp. 305–316.
R. Kass and T.W. Finin, Modeling the user in natural language systems, Computational Linguistics 14(3) (1988) 5–22.
D. Koller, A. Levy and A. Pfeffer, P-CLASSIC: A tractable probabilistic description logic, in: Proc. of National Conference on Artificial Intelligence (AAAI'97), Providence, RI (AAAI Press/The MIT Press, 1997) pp. 390–397.
A. Levy, A. Rajaraman and J. Ordille, Querying heterogeneous information sources using source descriptions, in: Proc. of International Conference on Very Large Data Bases (VLDB'96), Bombay, India (Morgan Kaufmann, 1996) pp. 251–262.
A. Levy and M.C. Rousset, Combining Horn rules and description logics in CARIN, Artificial Intelligence 104(1–2) (1998) 165–209.
T. Lukasiewicz, Probabilistic deduction with conditional constraints over basic events, Journal of Artificial Intelligence Research 10 (1999) 199–241.
J. Madhavan, P.A. Bernstein and E. Rahm, Generic schema matching with cupid, in: Proc. of International Conference on Very Large Data Bases (VLDB 2001), Roma, Italy (Morgan Kaufmann, 2001) pp. 49–58.
A.G. Miller, WordNet: A lexical database for English, Communications of the ACM 38(11) (1995) 39–41.
T. Milo and S. Zohar, Using schema matching to simplify heterogenous data translations, in: Proc. of International Conference on Very Large Data Bases (VLDB'98), New York (Morgan Kaufmann, 1998) pp. 122–133.
P. Mitra, G. Wiederhold and J. Jannink, Semi-automatic integration of knowledge sources, in: Proc. of Fusion'99, Sunnyvale, CA (1999).
N.J. Nilsson, Probabilistic logic, Artificial Intelligence 28(1) (1986) 71–87.
J. Orwant, Heterogeneous learning in the doppelgänger user modeling system, User Modeling and User-Adapted Interaction 4(2) (1995) 107–130.
L. Palopoli, D. Rosaci, G. Terracina and D. Ursino, Un modello concettuale per rappresentare e derivare la semantica associata a sorgenti informative strutturate e semi-strutturate, in: Atti del Congresso sui Sistemi Evoluti per Basi di Dati (SEBD 2001), Venezia, Italy (2001) pp. 131–145 (in Italian).
L. Palopoli, D. Rosaci, G. Terracina and D. Ursino, Modeling web-search scenarios exploiting user and source profiles, AI Communications 14(4) (2002) 215–230.
L. Palopoli, D. Saccà and D. Ursino, DLP: a description logic for extracting and managing complex terminological and structural properties from database schemes, Information Systems 24(5) (1999) 410–424.
L. Palopoli, G. Terracina and D. Ursino, A graph-based approach for extracting terminological properties of elements of XML documents, in: Proc. of International Conference on Data Engineering (ICDE 2001), Heidelberg, Germany (IEEE Computer Society, 2001) pp. 330–337.
J. Pearl, Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, 1988).
W. Pohl, Combining partitions and modal logic for user modeling, in: Proc. of International Conference on Formal and Applied Practical Reasoning (FAPR'96), Bonn, Germany, Lecture Notes in Computer Science, Vol. 1085 (Springer, 1996) pp. 480–494.
E. Rahm and P.A. Bernstein, A survey of approaches to automatic schema matching, VLDB Journal 10(4) (2001) 334–350.
B. Raskutti, A. Beitz and B. Ward, A feature-based approach for recommending selection based on past preferences, User Modeling and User-Adapted Interaction 7(3) (1997) 179–218.
E.H. Shortliffe, Computer-Based Medical Consultations: MYCIN (Elsevier Science, New York, 1976).
U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research 14 (2001) 137–166.
R.G. Swinburne, An Introduction to Confirmation Theory (Methuen, London, 1973).
G. Terracina and D. Ursino, Deriving synonymies and homonymies of object classes in semi-structured information sources, in: Proc. of International Conference on Management of Data (COMAD 2000), Pune, India (McGraw Hill, 2000) pp. 21–32.
C. Tresp and R. Molitor, A description logic for vague knowledge, in: Proc. of European Conference on Artificial Intelligence (ECAI'98), Brighton, UK (Wiley, 1998) pp. 361–365.
J. Yen, Generalizing term subsumption languages to fuzzy logic, in: Proc. of International Joint Conference on Artificial Intelligence (IJCAI'91), Sydney, Australia (1991) pp. 472–477.
I. Zukerman, D.W. Albrecht and A.E. Nicholson, Predicting users' requests on the www, in: Proc. of the International Conference on User Modeling (UM'99), Banff, Canada (1999) pp. 275–284.
Author information
Authors and Affiliations
About this article
Cite this article
Palopoli, L., Terracina, G. & Ursino, D. A Plausibility Description Logic for Handling Information Sources with Heterogeneous Data Representation Formats. Annals of Mathematics and Artificial Intelligence 39, 385–430 (2003). https://doi.org/10.1023/A:1026094327713
Issue Date:
DOI: https://doi.org/10.1023/A:1026094327713