Skip to main content
Log in

Comparative binding energy analysis of haloalkane dehalogenase substrates: Modelling of enzyme-substrate complexes by molecular docking and quantum mechanical calculations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We evaluate the applicability of automated molecular docking techniques and quantum mechanical calculations to the construction of a set of structures of enzyme-substrate complexes for use in Comparative binding energy (COMBINE) analysis to obtain 3D structure-activity relationships. The data set studied consists of the complexes of eighteen substrates docked within the active site of haloalkane dehalogenase (DhlA) from Xanthobacter autotrophicus GJ10. The results of the COMBINE analysis are compared with previously reported data obtained for the same dataset from modelled complexes that were based on an experimentally determined structure of the DhlA-dichloroethane complex. The quality of fit and the internal predictive power of the two COMBINE models are comparable, but better external predictions are obtained with the new approach. Both models show a similar composition of the principal components. Small differences in the relative contributions that are assigned to important residues for explaining binding affinity differences can be directly linked to structural differences in the modelled enzyme-substrate complexes: (i) rotation of all substrates in the active site about their longitudinal axis, (ii) repositioning of the ring of epihalohydrines and the halogen substituents of 1,2-dihalopropanes, and (iii) altered conformation of the long-chain molecules (halobutanes and halohexanes). For external validation, both a novel substrate not included in the training series and two different mutant proteins were used. The results obtained can be useful in the future to guide the rational engineering of substrate specificity in DhlA and other related enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortiz, A.R., Pisabarro, M.T., Gago, F., and Wade, R.C., J. Med. Chem., 38 (1995) 2681.

    Google Scholar 

  2. Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, G., Gago, F., and Wade, R.C., J. Med. Chem., 40 (1997) 1136.

    Google Scholar 

  3. Pastor, M., Perez, C., and Gago, F., J. Mol. Graph. Model., 15 (1997) 364.

    Google Scholar 

  4. Perez, C., Pastor, M., Ortiz, A.R., and Gago, F., J. Med. Chem., 41 (1998) 836.

    Google Scholar 

  5. Lozano, J.J., Pastor, M., Cruciani, G., Gaedt, K., Centeno, N.B., Gago, F., and Sanz, F., J. Comput.-Aid. Mol. Design, 14 (2000) 341.

    Google Scholar 

  6. Tomic, S., Nilsson, L., and Wade, C.R., J. Med. Chem., 43 (2000) 1780.

    Google Scholar 

  7. Cuevas, C., Pastor, M., Perez, C., and Gago, F., Combin. Chem. High Through. Screen., 4 (2001) 627.

    Google Scholar 

  8. Kmunicek, J., Luengo, S., Gago, F., Ortiz, A.R., Wade, R.C., and Damborsky, J., Biochemistry, 40 (2001) 8905.

    Google Scholar 

  9. Wade, R.C. 2001. Derivation of QSARs using 3D structural models of protein-ligand complexes by COMBINE analysis, In Holtje, H.-D. and Sippl, W. (eds.), Rational approaches to drug design: 13th European symposium on Quantitative Structure-Activity Relationships, Prous Science, Barcelona, p. 23.

    Google Scholar 

  10. Wang, T., and Wade, R.C., J. Med. Chem., 44 (2001) 961.

    Google Scholar 

  11. Wang, T., and Wade, R.C., J. Med. Chem., 45 (2002) 4828.

    Google Scholar 

  12. Damborsky, J., Kmunicek, J., Jedlicka, T., Luengo, S., Gago, F., Ortiz, A.R., and Wade, R.C. 2003. Rational re-design of haloalkane dehalogenases guided by comparative binding energy analysis, In Svendsen, A. (ed.), Enzyme functionality: design, engineering and screening, Marcel Dekker, New York, in press.

    Google Scholar 

  13. Verschueren, K.H.G., Seljee, F., Rozeboom, H.J., Kalk, K.H., and Dijkstra, B.W., Nature, 363 (1993) 693.

    Google Scholar 

  14. Newman, J., Peat, T.S., Richard, R., Kan, L., Swanson, P.E., Affholter, J.A., Holmes, I.H., Schindler, J.F., Unkefer, C.J., and Terwilliger, T.C., Biochemistry, 38 (1999) 16105.

    Google Scholar 

  15. Marek, J., Vevodova, J., Kuta-Smatanova, I., Nagata, Y., Svensson, L.A., Newman, J., Takagi, M., and Damborsky, J., Biochemistry, 39 (2000) 14082.

    Google Scholar 

  16. Damborsky, J., and Koca, J., Prot. Engng., 12 (1999) 989.

    Google Scholar 

  17. Schanstra, J.P., Kingma, J., and Janssen, D.B., J. Biol. Chem., 271 (1996) 14747.

    Google Scholar 

  18. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.

    Google Scholar 

  19. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucl. Acid Res., 28 (2000) 235.

    Google Scholar 

  20. Vriend, G., J. Mol. Graphics, 8 (1990) 52.

    Google Scholar 

  21. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Ferguson, D.M., Radmer, R.J., Seibel, G.L., Singh, U.C., Weiner, P.K., and Kollman, P.A. AMBER 5.0, University of California, San Francisco (1997).

    Google Scholar 

  22. Solis, F.J., and Wets, R.J.B., Math. Oper. Res., 6 (1981) 19.

    Google Scholar 

  23. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Google Scholar 

  24. Stewart, J.J.P., J. Comput.-Aid. Mol. Design, 4 (1990) 1.

    Google Scholar 

  25. Cernohorsky, M., Kuty, M., and Koca, J., Comp. Chem., 21 (1996) 35.

    Google Scholar 

  26. Damborsky, J., Prokop, M., and Koca, J., Trends Biochem. Sci., 26 (2001) 71.

    Google Scholar 

  27. Damborsky, J., Kuty, M., Nemec, M., and Koca, J., J. Chem. Inf. Comp. Sci., 37 (1997) 562.

    Google Scholar 

  28. Verschueren, K.H.G., Kingma, J., Rozeboom, H.J., Kalk, K.H., Janssen, D.B., and Dijkstra, B.W., Biochemistry, 32 (1993) 9031.

    Google Scholar 

  29. Kennes, C., Pries, F., Krooshof, G.H., Bokma, E., Kingma, J., and Janssen, D.B., Eur. J. Biochem., 228 (1995) 403.

    Google Scholar 

  30. Krooshof, G.H., Ridder, I.S., Tepper, A.W.J.W., Vos, G.J., Rozeboom, H.J., Kalk, K.H., Dijkstra, B.W., and Janssen, D.B., Biochemistry, 37 (1998) 15013.

    Google Scholar 

  31. Schindler, J.F., Naranjo, P.A., Honaberger, D.A., Chang, C.-H., Brainard, J.R., Vanderberg, L.A., and Unkefer, C.J., Biochemistry, 38 (1999) 5772.

    Google Scholar 

  32. Lightstone, F.C., Zheng, Y.-J., Maulitz, A.H., and Bruice, T.C., Proc. Natl. Acad. Sci. USA, 94 (1997) 8417.

    Google Scholar 

  33. Shurki, A., Strajbl, M., Villa, J., and Warshel, A., J. Am. Chem. Soc., 124 (2002) 4097.

    Google Scholar 

  34. Bohac, M., Nagata, Y., Prokop, Z., Prokop, M., Monincova, M., Koca, J., Tsuda, M., and Damborsky, J., Biochemistry, 41 (2002) 14272.

    Google Scholar 

  35. Devi-Kesavan, L.S., and Gao, J., J. Am. Chem. Soc., 125 (2003) 1532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kmuníček, J., Boháč, M., Luengo, S. et al. Comparative binding energy analysis of haloalkane dehalogenase substrates: Modelling of enzyme-substrate complexes by molecular docking and quantum mechanical calculations. J Comput Aided Mol Des 17, 299–311 (2003). https://doi.org/10.1023/A:1026159215220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026159215220

Keywords

Navigation