Skip to main content
Log in

Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

New explicit, zero dissipative, hybrid Numerov type methods are presented in this paper. We derive these methods using an alternative which avoids the use of costly high accuracy interpolatory nodes. We only need the Taylor expansion at some internal points then. The method is of sixth algebraic order at a cost of seven stages per step while their phase lag order is fourteen. The zero dissipation condition is satisfied, so the methods possess an non empty interval of periodicity. Numerical results over some well known problems in physics and mechanics indicate the superiority of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Avdelas and T.E. Simos, Embedded methods for the numerical soluiton of the Schrödinger equation, Comput. Math. Appl. 31 (1996) 85–102.

    Google Scholar 

  2. G. Avdelas and T.E. Simos, Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation, Phys. Rev. E. 62 (2000) 1375–1381.

    Google Scholar 

  3. J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964) 50–64.

    Google Scholar 

  4. J.C. Butcher, On Runge-Kutta processes of high order, J. Austral. Math. Soc. 4 (1964) 179–194.

    Google Scholar 

  5. M.M. Chawla and P.S. Rao, Numerov-type method with minimal phase lag for the integration of second order periodic initial value problems, J. Comput. Appl. Math. 11 (1984) 277–281.

    Google Scholar 

  6. M.M. Chawla and P.S. Rao, Numerov type method with minimal phase lag for the integration of second order periodic initial value problems II. Explicit method, J. Comput. Appl. Math. 15 (1986) 329–337.

    Google Scholar 

  7. M.M. Chawla and P.S. Rao, An explicit sixth-order method with phase-lag of order eight for y′ = f (t,y), J. Comput. Appl. Math. 17 (1987) 365–368.

    Google Scholar 

  8. E. Fehlberg, Classical eighth and lower order Runge-Kutta-Nyström formulas with stepsize control for special second order differential equations, NASA Technical Report TR R-381, G.C. Marsal Space Flight Center, Alabama (1972).

    Google Scholar 

  9. E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations, Vol. I (Springer, Berlin, 1987).

    Google Scholar 

  10. P.J. Van Der Houwen and B.P. Sommeijer, Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal. 24 (1987) 595–617.

    Google Scholar 

  11. R.K. Jain, N.S. Kambo and R. Goel, A sixth order P-stable symmetric multistep method for periodic initial value problems of second order differential equations, IMA J. Numer. Anal. 4 (1984) 117–125.

    Google Scholar 

  12. J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976) 189–202.

    Google Scholar 

  13. L.D. Landau and F.M. Lifshitz, Quantum Mechanics (Pergamon Press, New York, 1965).

    Google Scholar 

  14. R.L. Liboff, Introductory Quantum Mechanics (Addison-Wesley, Reading, MA, 1980).

    Google Scholar 

  15. G. Papageorgiou, C. Tsitouras and I.T. Famelis, Explicit Numerov-type methods for second order IVPs with oscillating solutions, Internat. J. Modern Phys. C 12 (2001) 657–666.

    Google Scholar 

  16. S.N. Papakostas and C. Tsitouras, High algebraic order, high phase-lag order Runge-Kutta and Nyström pairs, SIAM J. Sci. Comput. 21 (1999) 747–763.

    Google Scholar 

  17. T.E. Simos, Numerical solution of ordinary differential equations with periodical solution, Doctoral dissertation, National Technical University of Athens (1990).

  18. T.E. Simos, Explicit two-step methods with minimal phase-lag for the numerical integration of special second order initial value problems and their application to the one-dimensional Schrödinger equation, J. Comput. Appl. Math. 39 (1992) 89–94.

    Google Scholar 

  19. T.E. Simos, Eighth-order methods for elastic scattering phase shifts, Internat. J. Theoret. Phys. 36 (1997) 663–672.

    Google Scholar 

  20. T.E. Simos, Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation, Comput. Chem. 23 (1999) 439–446.

    Google Scholar 

  21. T.E. Simos, Explicit eighth-order methods for the numerical integration of initial value problems with periodic or oscillating solutions, Comput. Phys. Commun. 119 (1999) 32–44.

    Google Scholar 

  22. T.E. Simos, Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed. A. Hinchliffe (Royal Soc. Chemistry, 2000) pp. 38–142.

  23. T.E. Simos and P.S. Williams, On finite difference methods for the solution of the Schrödinger equation, Comput. Chem. 23 (1999) 513–554.

    Google Scholar 

  24. T.E. Simos and P.S. Williams, New insights in the development of Numerov-type methods with minimal phase-lag for he numerical solution of the Schrödinger equation, Comput. Chem. 25 (2001) 77–82.

    Google Scholar 

  25. R.M. Thomas and T.E. Simos, A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation, J. Comput. Appl. Math. 87 (1997) 215–226.

    Google Scholar 

  26. C. Tsitouras, A parameter study of a Runge-Kutta pair of orders 6(5), Appl. Math. Lett. 11 (1998) 65–69.

    Google Scholar 

  27. C. Tsitouras, Neural networks with multidimensional transfer functions, IEEE Trans. Neural Networks 13 (2002) 222–228.

    Google Scholar 

  28. C. Tsitouras, Explicit Numerov-type methods with reduced number of stages, Comput. Math. Appl. 45 (2003) 37–42.

    Google Scholar 

  29. C. Tsitouras and I.T. Famelis, Symbolic derivation of order conditions for explicit Numerov-type methods, in preparation.

  30. C. Tsitouras and S.N. Papakostas, Cheap error estimation for Runge-Kutta methods, SIAM J. Sci. Comput. 20 (1999) 2067–2088.

    Google Scholar 

  31. C. Tsitouras and T.E. Simos, Explicit high order methods for the numerical integration of periodic initial value problems, Appl. Math. Comput. 95 (1998) 15–26.

    Google Scholar 

  32. R. van Dooren, Stabilization of Cowell's classical finite difference methods for numerical integration, J. Comput. Phys. 16 (1974) 186–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E. Simos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T., Famelis, I. & Tsitouras, C. Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions. Numerical Algorithms 34, 27–40 (2003). https://doi.org/10.1023/A:1026167824656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026167824656

Navigation