Abstract
New explicit, zero dissipative, hybrid Numerov type methods are presented in this paper. We derive these methods using an alternative which avoids the use of costly high accuracy interpolatory nodes. We only need the Taylor expansion at some internal points then. The method is of sixth algebraic order at a cost of seven stages per step while their phase lag order is fourteen. The zero dissipation condition is satisfied, so the methods possess an non empty interval of periodicity. Numerical results over some well known problems in physics and mechanics indicate the superiority of the new method.
Similar content being viewed by others
References
G. Avdelas and T.E. Simos, Embedded methods for the numerical soluiton of the Schrödinger equation, Comput. Math. Appl. 31 (1996) 85–102.
G. Avdelas and T.E. Simos, Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation, Phys. Rev. E. 62 (2000) 1375–1381.
J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964) 50–64.
J.C. Butcher, On Runge-Kutta processes of high order, J. Austral. Math. Soc. 4 (1964) 179–194.
M.M. Chawla and P.S. Rao, Numerov-type method with minimal phase lag for the integration of second order periodic initial value problems, J. Comput. Appl. Math. 11 (1984) 277–281.
M.M. Chawla and P.S. Rao, Numerov type method with minimal phase lag for the integration of second order periodic initial value problems II. Explicit method, J. Comput. Appl. Math. 15 (1986) 329–337.
M.M. Chawla and P.S. Rao, An explicit sixth-order method with phase-lag of order eight for y′ = f (t,y), J. Comput. Appl. Math. 17 (1987) 365–368.
E. Fehlberg, Classical eighth and lower order Runge-Kutta-Nyström formulas with stepsize control for special second order differential equations, NASA Technical Report TR R-381, G.C. Marsal Space Flight Center, Alabama (1972).
E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations, Vol. I (Springer, Berlin, 1987).
P.J. Van Der Houwen and B.P. Sommeijer, Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal. 24 (1987) 595–617.
R.K. Jain, N.S. Kambo and R. Goel, A sixth order P-stable symmetric multistep method for periodic initial value problems of second order differential equations, IMA J. Numer. Anal. 4 (1984) 117–125.
J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976) 189–202.
L.D. Landau and F.M. Lifshitz, Quantum Mechanics (Pergamon Press, New York, 1965).
R.L. Liboff, Introductory Quantum Mechanics (Addison-Wesley, Reading, MA, 1980).
G. Papageorgiou, C. Tsitouras and I.T. Famelis, Explicit Numerov-type methods for second order IVPs with oscillating solutions, Internat. J. Modern Phys. C 12 (2001) 657–666.
S.N. Papakostas and C. Tsitouras, High algebraic order, high phase-lag order Runge-Kutta and Nyström pairs, SIAM J. Sci. Comput. 21 (1999) 747–763.
T.E. Simos, Numerical solution of ordinary differential equations with periodical solution, Doctoral dissertation, National Technical University of Athens (1990).
T.E. Simos, Explicit two-step methods with minimal phase-lag for the numerical integration of special second order initial value problems and their application to the one-dimensional Schrödinger equation, J. Comput. Appl. Math. 39 (1992) 89–94.
T.E. Simos, Eighth-order methods for elastic scattering phase shifts, Internat. J. Theoret. Phys. 36 (1997) 663–672.
T.E. Simos, Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation, Comput. Chem. 23 (1999) 439–446.
T.E. Simos, Explicit eighth-order methods for the numerical integration of initial value problems with periodic or oscillating solutions, Comput. Phys. Commun. 119 (1999) 32–44.
T.E. Simos, Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed. A. Hinchliffe (Royal Soc. Chemistry, 2000) pp. 38–142.
T.E. Simos and P.S. Williams, On finite difference methods for the solution of the Schrödinger equation, Comput. Chem. 23 (1999) 513–554.
T.E. Simos and P.S. Williams, New insights in the development of Numerov-type methods with minimal phase-lag for he numerical solution of the Schrödinger equation, Comput. Chem. 25 (2001) 77–82.
R.M. Thomas and T.E. Simos, A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation, J. Comput. Appl. Math. 87 (1997) 215–226.
C. Tsitouras, A parameter study of a Runge-Kutta pair of orders 6(5), Appl. Math. Lett. 11 (1998) 65–69.
C. Tsitouras, Neural networks with multidimensional transfer functions, IEEE Trans. Neural Networks 13 (2002) 222–228.
C. Tsitouras, Explicit Numerov-type methods with reduced number of stages, Comput. Math. Appl. 45 (2003) 37–42.
C. Tsitouras and I.T. Famelis, Symbolic derivation of order conditions for explicit Numerov-type methods, in preparation.
C. Tsitouras and S.N. Papakostas, Cheap error estimation for Runge-Kutta methods, SIAM J. Sci. Comput. 20 (1999) 2067–2088.
C. Tsitouras and T.E. Simos, Explicit high order methods for the numerical integration of periodic initial value problems, Appl. Math. Comput. 95 (1998) 15–26.
R. van Dooren, Stabilization of Cowell's classical finite difference methods for numerical integration, J. Comput. Phys. 16 (1974) 186–192.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Simos, T., Famelis, I. & Tsitouras, C. Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions. Numerical Algorithms 34, 27–40 (2003). https://doi.org/10.1023/A:1026167824656
Issue Date:
DOI: https://doi.org/10.1023/A:1026167824656