Skip to main content
Log in

Singular Points and an Upper Bound of Medians in Upper Semimodular Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

Given a k-tuple P=(x 1,x 2,...,x k ) in a finite lattice X endowed with the lattice metric d, a median of P is an element m of X minimizing the sum ∑ i d(m,x i ). If X is an upper semimodular lattice, Leclerc proved that a lower bound of the medians is c(P), the majority rule and he pointed out an open problem: “Is c 1(P)=∨ i x i , the upper bound of the medians?” This paper shows that the upper bound is not c 1(P) and gives the best possible upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandelt, H. J. and Barthélemy, J. P. (1984) Medians in median graphs, Discrete Appl. Math. 8, 131–142.

    Google Scholar 

  2. Bandelt, H. J. Single facility location on median networks, Math. Oper. Res., to appear.

  3. Barbut, M. (1980) Médiane, distributivite, éloignements, Math. Sci. Humain. 70, 5–31.

    Google Scholar 

  4. Barthélemy, J. P. and Janowitz, M. F. (1991) A formal theory of consensus, SIAM J. Discrete Math. 4, 305–322.

    Google Scholar 

  5. Barthélemy, J. P., Leclerc, B. and Monjardet, B. (1986) On the use of ordered sets in problems of comparison and consensus of classification, J. Classification 3, 187–224.

    Google Scholar 

  6. Barthélemy, J. P. and Leclerc, B. (1995) The median procedure for partitions, in I. J. Cox, P. Hansen and B. Julesz (eds), Partitioning Data Sets, Amer. Math. Soc., Providence, RI, pp. 3–34.

    Google Scholar 

  7. Birkhoff, G. (1967) Lattice Theory, 3rd edn, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  8. Leclerc, B. and Cucumel, G. (1987) Consensus en classification: Une revue bibliographique, Math. Sci. Humain. 100, 109–128.

    Google Scholar 

  9. Leclerc, B. (1990) Medians and majorities in semimodular lattices, SIAM J. Discrete Math. 3, 266–276.

    Google Scholar 

  10. Leclerc, B. (1998) Consensus of classifications: The case of trees, in A. Rizzi, M. Vichi and H.-H. Bock (eds), Advances in Data Sciences and Classification, Studies in Classifications, Data Analysis and Knowledge Organization, Springer-Verlag, Berlin, pp. 81–90.

    Google Scholar 

  11. McMorris, F. R. and Power, R. C. (1995) The median procedure in a formal theory of consensus, SIAM J. Discrete Math. 8, 507–516.

    Google Scholar 

  12. McMorris, F. R., Mulder, H. M. and Roberts, F. S. The median function on median graphs and median semilattices, Discrete Appl. Math., to appear.

  13. Monjardet, B. (1981) Metrics on partially ordered sets, a survey, Discrete Math. 35, 173–184.

    Google Scholar 

  14. Monjardet, B. (1990) Comments on R. P. Dilworth's lattices with unique irreducible decompositions, in K. Bogart, R. Freese and J. Kung (eds), The Dilworth Theorems; Selected Works of Robert P. Dilworth, Birkhäuser, Boston, pp. 192–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Boukaabar, K. Singular Points and an Upper Bound of Medians in Upper Semimodular Lattices. Order 17, 287–299 (2000). https://doi.org/10.1023/A:1026760432073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026760432073

Navigation