Skip to main content
Log in

A Linear Complementarity Approach for the Non-convex Seismic Frictional Interaction between Adjacent Structures under Instabilizing Effects*

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The paper deals with a numerical treatment of the dynamic hemivariational inequality problem concerning the elastoplastic-fracturing unilateral contact with friction between neighboring structures under second-order geometric effects during earthquakes. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Houbolt method. The generally nonconvex constitutive contact laws are piece-wise linearized, and in each time-step a nonconvex linear complementarity problem is solved with a reduced number of unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos, S.A. and Spiliopoulos K.V (1991), Analysis of Building Pounding due to Earthquakes. In: Krätzig W.B. et al (eds.), Structural Dynamics, pp. 479-484, Balkema, Rotterdam.

    Google Scholar 

  2. Anastasiadis, K. (1986), Méthode simplifiée de calcul du second ordre de bâtiments à étage, Construction Metallique 4: 43-68.

    Google Scholar 

  3. Baniotopoulos, C.C. (1995), Optimal control of above-ground pipelines under dynamic excitations, Int. Jnl. Pressure Vessel & Piping 63: 211-222.

    Google Scholar 

  4. Bertero, V.V. (1987), Observations on structural pounding. Proc. Intern. Conf. The Mexico Earthquakes, ASCE, 264-278

  5. Bisbos, C. (1985), Aktive Steuerung erdbebenerregter Hochhäuser, Z. Angew. Math. Mech. (ZAMM) 65: T297-9.

    Google Scholar 

  6. Chen, W.F. and Lui, E.M. (1981), Structural Stability, Elsevier, New York.

    Google Scholar 

  7. Dem'yanov, V.F., Stavroulakis, G.E., Polyakova, L.N. and Panagiotopoulos+, P.D. (1996), Quasidifferentiability and nonsmooth modelling in mechanics, engineering and economics, Kluwer Academic, Dordrecht, Boston, London.

    Google Scholar 

  8. Haslinger, J. and Neittaanmäki, P. (1996), Finite element approximation for optimal shape, material and topology design, Wiley, Chichester (2nd edition).

    Google Scholar 

  9. Klarbring, A. (1986), General contact boundary conditions and the analysis of frictional systems. Int. J. Solids Structures, 22: 1377-1398.

    Google Scholar 

  10. Liolios, A.A. (1984), A finite-element central-difference approach to the dynamic problem of nonconvex unilateral contact between structures. In: B. Sendov, R. Lazarov and P. Vasilevski (eds.), Numerical Methods and Applications, pp. 394-401. Bulgarian Acad. Sciences, Sofia.

    Google Scholar 

  11. Liolios, A.A. (1989), A linear complementarity approach to the nonconvex dynamic problem of unilateral contact with friction between adjacent structures. Z. Angew. Math. Mech. (ZAMM) 69: T 420-T 422.

    Google Scholar 

  12. Maier, G. (1971), Incremental Elastoplastic Analysis in the Presence of Large Displacements and Physical Instabilizing Effects, Int. Jnl. Solids and Structures 7: 345-372.

    Google Scholar 

  13. Maier, G. (1973), Mathematical programming methods in structural analysis. In: Brebbia, C. & H. Tottenham (eds.), Variational methods in engineering, Proc. Int. Conf. Southampton University Press, Southampton, Vol. 2, 8/1-8/32.

  14. Miettinen, M., Mäkelä M.M. and Haslinger, J. (1995), On mumerical solution of hemivariational inequalities by nonsmooth optimization methods, Journal of Global Optimization 6: 401-425.

    Google Scholar 

  15. Mistakidis, E.S. and Stavroulakis, G.E. (1998), Nonconvex Optimization in Mechanics: Algorithms, Heuristics and Engineering Applications, Kluwer Academic, Dordrecht, Boston, London.

    Google Scholar 

  16. Naniewicz, Z. and Panagiotopoulos, P.D. (1995), Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York.

    Google Scholar 

  17. Nitsiotas, G. (1971), Die Berechnung statisch unbestimmter Tragwerke mit einseitigen Bindungen, Ingenieur-Archiv 41: 46-60.

    Google Scholar 

  18. Panagiotopoulos=, P.D., (1983), Non-convex Energy Functions. Hemivariational Inequalities and Substationarity principles, Acta Mechanica 48: 111-130.

    Google Scholar 

  19. Panagiotopoulos=, P.D. (1984), Optimal control of structures with convex and nonconvex energy densities and variational and hemivariational inequalities, Eng. Struct. 6: 12-18.

    Google Scholar 

  20. Panagiotopoulos=, P.D. (1985), Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhäuser Verlag, Boston-Basel-Stuttgart.

    Google Scholar 

  21. Panagiotopoulos=, P.D. (1993), Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin, New York.

    Google Scholar 

  22. Papadrakakis, M., Apostolopoulou, K., Bitzarakis, S. and Zacharopoulos, A. (1993), A 3D model for the analysis of building pounding during earthquakes. In: Moan, T. et al., (eds.), '93, pp. 85-92, Balkema, Rotterdam.

    Google Scholar 

  23. Pardalos, P. (1991), Global Optimization Algorithms for Linearly Constrained Indefinite Quadratic Problems, Computers Math. Applic. 21(6/7): 87-97.

    Google Scholar 

  24. Pfeiffer, F. and Glocker, Ch. (1996), Multibody Dynamics with Unilateral Contacts, Wiley, New York.

    Google Scholar 

  25. Stavroulakis, G.E. (in press), Quasi-variational inequalities. In: Floudas, C.A. and Pardalos, P.A. (Eds.), Encyclopedia of Optimization, Kluwer Academic, London.

  26. Stavroulakis, G.E., Antes, H. and P.D. Panagiotopoulos= (1999), Transient elastodynamics around cracks including contact and friction, Compo Meth. in Appl. Mech. and Enging., Special Issue: Computational Modeling of Contact and Friction, Eds.: I.A.C. Martins and A. Klarbring, 177(3/4), 427-440.

  27. Stavroulakis, G.E. and Mistakidis, E.S. (in press), Nonconvex Energy Functions: Hemivariational Inequalities. In: Floudas, C.A. and Pardalos, P.A. (Eds.), Encyclopedia of Optimization, Kluwer Academic, London.

  28. Talaslidis, D. and P.D. Panagiotopoulos=, (1982), A linear finite element approach to the solution of the variational inequalities arising in contact problems of structural dynamics. Int. J. Num. Meth. Enging., 18: 1505-1520.

    Google Scholar 

  29. Tzaferopoulos, M.A. and Liolios, A.A. (1997), On a Branch and Bound Algorithm for the Solution of a Family of Softening Material Problems of Mechanics with Applications to the Analysis of Metallic Structures, Journal of Global Optimization 11: 133-149.

    Google Scholar 

  30. Wolf, J.P. and Skrikerud, P.E. (1980), Mutual pounding of adjacent structures during earthquakes. Nuclear Engin. Design 57: 253-275.

    Google Scholar 

  31. Zacharenakis, E.C. (1997), On the Disturbance Attenuation and H-Optimization in structural analysis, Z. Angew. Math. Mech. (ZAMM) 77: 189-195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liolios, A. A Linear Complementarity Approach for the Non-convex Seismic Frictional Interaction between Adjacent Structures under Instabilizing Effects*. Journal of Global Optimization 17, 259–266 (2000). https://doi.org/10.1023/A:1026789817828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026789817828

Navigation