Skip to main content
Log in

Theorem Proving Modulo

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of general interest because it permits one to separate computations and deductions in a clean way. The first contribution of this paper is to define a sequent calculus modulo that gives a proof-theoretic account of the combination of computations and deductions. The congruence on propositions is handled through rewrite rules and equational axioms. Rewrite rules apply to terms but also directly to atomic propositions.

The second contribution is to give a complete proof search method, called extended narrowing and resolution (ENAR), for theorem proving modulo such congruences. The completeness of this method is proved with respect to provability in sequent calculus modulo.

An important application is that higher-order logic can be presented as a theory in deduction modulo. Applying the ENAR method to this presentation of higher-order logic subsumes full higher-order resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J.: Explicit substitutions, J. Funct. Programming 1(4) (1991), 375-416.

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, P. B.: Resolution in type theory, J. Symbolic Logic 36 (1971), 414-432.

    Article  MATH  MathSciNet  Google Scholar 

  3. Baader, F. and Nipkow, T.: Term Rewriting and All That, Cambridge University Press, 1998.

  4. Bachmair, L.: Proof methods for equational theories, Ph.D. thesis, University of Illinois, Urbana-Champaign, IL, 1987, Revised version, August 1988.

    Google Scholar 

  5. Bachmair, L., Ganzinger, H., Lynch, C. and Snyder, W.: Basic paramodulation, Inform. and Comput. 121(2) (1995), 172-192.

    Article  MATH  MathSciNet  Google Scholar 

  6. Barendregt, H. and Barendsen, E.: Autartik computations in formal proofs, J. Automated Reasoning 28(3) (2002), 321-336.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bürckert, H.-J.: A resolution principle for clauses with constraints, in M. E. Stickel (ed.), Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany), Lecture Notes in Comput. Sci. 449, Springer-Verlag, New York, 1990, pp. 178-192.

    Google Scholar 

  8. Bürckert, H.-J.: A Resolution Principle for a Logic with Restricted Quantifiers, Lecture Notes in Artificial Intelligence 568, Springer-Verlag, 1991.

  9. Curien, P.-L., Hardin, T. and Lévy, J.-J.: Confluence properties of weak and strong calculi of explicit substitutions, J. ACM 43(2) (1996), 362-397.

    Article  MATH  MathSciNet  Google Scholar 

  10. Degtyarev, A. and Voronkov, A.: Equality reasoning in sequent-based calculi, in A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Vol. I, Elsevier, 2001, Chapt. 10, pp. 611-706.

  11. Dershowitz, N. and Jouannaud, J.-P.: Rewrite systems, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier (North-Holland), 1990, Chapt. 6, pp. 244-320.

  12. Dowek, G.: Lambda-calculus, combinators and the comprehension scheme, in M. Dezan-Ciancaglini and G. Plotkin (eds.), Typed Lambda Calculi and Applications, Lecture Notes in Comput. Sci. 902, 1995, pp. 154-170.

  13. Dowek, G.: Proof normalization for a first-order formulation of higher-order logic, in E. Gunter and A. Felty (eds.), Theorem Proving in Higher Order Logics, Lecture Notes in Comput. Sci. 1275, 1997, pp. 105-119.

  14. Dowek, G.: La Part du Calcul, Université de Paris 7, Mémoire d'habilitation, 1999.

  15. Dowek, G.: Axioms vs. rewrite rules: From completeness to cut elimination, in H. Kirchner and C. Ringeissen (eds.), Frontiers of Combining Systems, Lecture Notes in Artificial Intelligence 1794, Springer-Verlag, 2000, pp. 62-72.

  16. Dowek, G., Hardin, T. and Kirchner, C.: Theorem proving modulo, Rapport de Recherche 3400, Institut National de Recherche en Informatique et en Automatique, 1998. http://www.inria.fr/rrrt/rr-3400.html.

  17. Dowek, G., Hardin, T. and Kirchner, C.: Higher-order unification via explicit substitutions, Inform. and Comput. 157 (2000), 183-235.

    Article  MATH  MathSciNet  Google Scholar 

  18. Dowek, G., Hardin, T. and Kirchner, C.: HOL-?s, an intentional first-order expression of higher-order logic, Math. Structures Comput. Sci. 11(1) (2001), 21-45.

    Article  MATH  MathSciNet  Google Scholar 

  19. Dowek, G., Hardin, T. and Kirchner, C.: Theorem proving modulo, revised version, Rapport de Recherche 4861, Institut National de Recherche en Informatique et en Automatique, 2003. http://www.inria.fr/rrrt/rr-4861.html.

  20. Dowek, G. and Werner, B.: Proof normalization modulo, in Types for Proofs and Programs, Lecture Notes in Comput. Sci. 1657, 1999, pp. 62-77.

  21. Gallier, J. H.: Logic for Computer Science: Foundations of Automatic Theorem Proving, Computer Science and Technology Series 5, Harper & Row, New York, 1986.

    MATH  Google Scholar 

  22. Gallier, J., Raatz, S. and Snyder, W.: Rigid E-unification and its applications to equational matings, in H. Aït-Kaci and M. Nivat (eds.), Resolution of Equations in Algebraic Structures, Vol. 1, Academic Press, New York, 1989, pp. 151-216.

    Google Scholar 

  23. Girard, J.-Y., Lafont, Y. and Taylor, P.: Proofs and Types, Cambridge Tracts Theoret. Comput. Sci. 7, Cambridge University Press, 1989.

  24. Huet, G.: Constrained resolution: A complete method for type theory, Ph.D. thesis, Case Western Reserve University, 1972.

  25. Huet, G.: A mechanization of type theory, in Proceeding of the Third International Joint Conference on Artificial Intelligence, 1973, pp. 139-146.

  26. Huet, G.: A unification algorithm for typed lambda calculus, Theoret. Comput. Sci. 1(1) (1975), 27-57.

    Google Scholar 

  27. Huet, G.: Résolution d'equations dans les langages d'ordre 1, 2,...,?, Thèse de Doctorat d'Etat, Université de Paris 7, France, 1976.

    Google Scholar 

  28. Hullot, J.-M.: Canonical forms and unification, in Proceedings 5th International Conference on Automated Deduction, Les Arcs (France), 1980, pp. 318-334.

  29. Jaffar, J. and Lassez, J.-L.: Constraint logic programming, in Proceedings of the 14th Annual ACM Symposium on Principles Of Programming Languages, Munich (Germany), 1987, pp. 111-119.

  30. Jouannaud, J.-P. and Kirchner, H.: Completion of a set of rules modulo a set of equations, SIAM J. Comput. 15(4) (1986), 1155-1194. Preliminary version in Proceedings 11th ACM Symposium on Principles of Programming Languages, Salt Lake City (USA), 1984.

    Article  MATH  MathSciNet  Google Scholar 

  31. Jouannaud, J.-P. and Kirchner, C.: Solving equations in abstract algebras: A rule-based survey of unification, in J.-L. Lassez and G. Plotkin (eds.), Computational Logic. Essays in honor of Alan Robinson, MIT Press, Cambridge, MA, 1991, Chapt. 8, pp. 257-321.

    Google Scholar 

  32. Kirchner, C.: Méthodes et outils de conception systématique d'algorithmes d'unification dans les théories équationnelles, Thèse de Doctorat d'Etat, Université Henri Poincaré - Nancy 1, 1985.

  33. Kirchner, H.: Orderings in automated theorem proving, in F. Hoffman (ed.), Mathematical Aspects of Artificial Intelligence, Proc. Symposia Appl. Math. 55, Amer. Math. Soc., 1998, pp. 55-95.

  34. Kirchner, C., Kirchner, H. and Rusinowitch, M.: Deduction with symbolic constraints, Revue d'Intelligence Artificielle 4(3) (1990), 9-52. Special issue on Automatic Deduction.

    Google Scholar 

  35. Kirchner, C. and Ringeissen, C.: Higher-order equational unification via explicit substitutions, in Proceedings 6th International Joint Conference ALP'97-HOA'97, Southampton (UK), Lecture Notes in Comput. Sci. 1298, Springer-Verlag, 1997, pp. 61-75.

  36. Klop, J., van Oostrom, V. and van Raamsdonk, F.: Combinatory reduction systems: Introduction and survey, Theoret. Comput. Sci. 121 (1993), 279-308.

    Article  MATH  MathSciNet  Google Scholar 

  37. Knuth, D. E. and Bendix, P. B.: Simple word problems in universal algebras, in J. Leech (ed.), Computational Problems in Abstract Algebra, Pergamon Press, Oxford, 1970, pp. 263-297.

    Google Scholar 

  38. Kolata, G.: With major math proof, brute computers show flash of reasoning power, New York Times, Tuesday, December 10, 1996.

  39. Lee, S.-J. and Plaisted, D.: Use of replace rules in theorem proving, Methods of Logic in Computer Science 1(2) (1994), 217-240.

    MATH  Google Scholar 

  40. Marché, C.: Normalised rewriting and normalised completion, in S. Abramsky (ed.), Proceedings 9th IEEE Symposium on Logic in Computer Science, Paris, 1994, pp. 394-403.

  41. McCune, W.: Solution of the Robbins problem, J. Automated Reasoning 19(3) (1997), 263-276.

    Article  MATH  MathSciNet  Google Scholar 

  42. Nieuwenhuis, R. and Rubio, A.: AC-superposition with constraints: No AC-unifiers needed, in A. Bundy (ed.), Proceedings 12th International Conference on Automated Deduction, Nancy (France), Lecture Notes in Artificial Intelligence 814, Springer-Verlag, 1994, pp. 545-559.

  43. Nutt, W., Réty, P. and Smolka, G.: Basic narrowing revisited, J. Symbolic Comput. 7(3-4) (1989), 295-318. Special issue on unification. Part one.

    MATH  MathSciNet  Google Scholar 

  44. Peterson, G.: A technique for establishing completeness results in theorem proving with equality, SIAM J. Comput. 12(1) (1983), 82-100.

    Article  MATH  MathSciNet  Google Scholar 

  45. Peterson, G. and Stickel, M. E.: Complete sets of reductions for some equational theories, J. ACM 28 (1981), 233-264.

    Article  MATH  MathSciNet  Google Scholar 

  46. Plaisted, D. A. and Potter, R. C.: Term rewriting: Some experimental results, J. Symbolic Comput. 11(1-2) (1991), 149-180.

    Article  MATH  MathSciNet  Google Scholar 

  47. Plotkin, G.: Building-in equational theories, Machine Intelligence 7 (1972), 73-90.

    MATH  MathSciNet  Google Scholar 

  48. Stickel, M.: Automated deduction by theory resolution, J. Automated Reasoning 1(4) (1985), 285-289.

    Article  MathSciNet  Google Scholar 

  49. Stuber, J.: A model-based completeness proof of extended narrowing and resolution, in 1st Int. Joint Conf. on Automated Reasoning (IJCAR-2001), Siena, Italy, Lecture Notes in Comput. Sci. 2083, Springer-Verlag, 2001, pp. 195-210.

  50. Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.): Term Rewriting Systems, Cambridge University Press, 2002.

  51. Vigneron, L.: Positive deduction modulo regular theories, in H. K. Büning (ed.), Annual Conference of the European Association for Computer Science Logic, Lecture Notes in Comput. Sci. 1092, Springer-Verlag, 1995, pp. 468-485. Selected papers.

  52. Viry, P.: Equational rules for rewriting logic, Theoret. Comput. Sci. 285(2) (2002), 487-517.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowek, G., Hardin, T. & Kirchner, C. Theorem Proving Modulo. Journal of Automated Reasoning 31, 33–72 (2003). https://doi.org/10.1023/A:1027357912519

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027357912519

Navigation