Skip to main content
Log in

Characterization of Smoothness of Multivariate Refinable Functions and Convergence of Cascade Algorithms of Nonhomogeneous Refinement Equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper concerns multivariate homogeneous refinement equations of the form

$$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^S } {a(\alpha )\varphi (Mx - \alpha ) + {\text{ }}x{\text{ }} \in {\text{ }}\mathbb{R}} ^s ,$$

and multivariate nonhomogeneous refinement equations of the form

$$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^S } {a(\alpha )\varphi (Mx - \alpha ) + g(x){\text{ }} \in {\text{ }}\mathbb{R}} ^s ,$$

where ϕ=(ϕ1,...,ϕ r )T is the unknown, M is an s×s dilation matrix with m=|det M|, g=(g 1,...,g r )T is a given compactly supported vector-valued function on R s, and a is a finitely supported refinement mask such that each a(α) is an r×r (complex) matrix. In this paper, we characterize the optimal smoothness of a multiple refinable function associated with homogeneous refinement equations in terms of the spectral radius of the corresponding transition operator restricted to a suitable finite-dimensional invariant subspace when M is an isotropic dilation matrix. Nonhomogeneous refinement equations naturally occur in multi-wavelets constructions. Let ϕ0 be an initial vector of functions in the Sobolev space (W 2 k(R s))r(kN). The corresponding cascade algorithm is given by

$$\varphi _n (x) = \sum\limits_{\alpha \in \mathbb{Z}^S } {a(\alpha )\varphi _n (Mx - \alpha ) + g(x),{\text{ }} \in {\text{ }}\mathbb{R}} ^s ,n = 1,2....$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary Subdivision, Memoirs of the American Mathematical Society, Vol. 93 (1991).

  2. D.R. Chen, R.Q. Jia and S.D. Riemenschneider, Convergence of vector subdivsion schemes in Sobolev spaces, Appl. Comput. Harmon. Anal. 12 (2002) 128–149.

    Google Scholar 

  3. T.B. Dinsenbacher and D.P. Hardin, Multivariate nonhomogeneous refinement equations, J. Fourier Anal. Appl. 5 (1999) 589–597.

    Google Scholar 

  4. N. Dyn, J.A. Gregory and D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx. 7 (1991) 127–147.

    Google Scholar 

  5. J. Geronimo, D. Hardin and P. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994) 373–401.

    Google Scholar 

  6. T.N.T. Goodman and S.L. Lee, Convergence of cascade algorithms, in: Mathematical Methods for Curves and Surfaces, Vol. II, eds. M. Daehlen, T. Lyche and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, 1998) pp. 191–212.

    Google Scholar 

  7. B. Han and R.Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998) 1177–1199.

    Google Scholar 

  8. D. Hardin and J. Marasovich, Biorthogonal multiwavelets on [—1, 1], Appl. Comput. Harmon. Anal. 7 (1999) 34–53.

    Google Scholar 

  9. J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981) 713–747.

    Google Scholar 

  10. R.Q. Jia, Subdivision schemes in L p spaces, Adv. Comput. Math. 3 (1995) 309–341.

    Google Scholar 

  11. R.Q. Jia, Approximation properties of multivariate wavelets, Math. Comp. 67 (1998) 647–665.

    Google Scholar 

  12. R.Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999) 4089–4112.

    Google Scholar 

  13. R.Q. Jia, Q.T. Jiang and S.L. Lee, Convergence of cascade algorithms in Sobolev spaces and integrals wavelets, Numer. Math. 91 (2002) 453–473.

    Google Scholar 

  14. R.Q. Jia, Q.T. Jiang and Z.W. Shen, Convergence of cascade algorithms associated with nonhomogeneous refinement equations, Proc. Amer. Math. Soc. 129 (2000) 415–427.

    Google Scholar 

  15. R.Q. Jia, Q.T. Jiang and Z.W. Shen, Distributional solutions of nonhomogeneous discrete and continuous refinement equations, SIAM J. Math. Anal. 32 (2000) 420–434.

    Google Scholar 

  16. R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of prewavelets II: Powers of two, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 209–246.

    Google Scholar 

  17. R.Q. Jia, S.D. Riemenschneider and D.X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998) 1533–1563.

    Google Scholar 

  18. R.Q. Jia, S.D. Riemenschneider and D.X. Zhou, Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21 (1999) 1–28.

    Google Scholar 

  19. Q.T. Jiang, Multivariate matrix refinable functions with arbitrary matrix dilation, Trans. Amer. Math. Soc. 351 (1999) 2407–2438.

    Google Scholar 

  20. S. Li, Convergence of cascade algorithms in Sobolev spaces associated with inhomogeneous refinement equations, J. Approx. Theory 104 (2000) 153–163.

    Google Scholar 

  21. S. Li, Convergence of cascade algorithms in Sobolev spaces associated with multivariate refinement equations, J. Math. Anal. Appl. 257 (2001) 154–169.

    Google Scholar 

  22. [22] S. Li, Multivariate refinement equations and convergence of cascade algorithm, Acta. Math. Sinica, English series, to appear.

  23. C.A. Micchelli and T. Sauer, Sobolev norm convergence of stationary subdivsion schemes, in: Surface Fitting and Multiresolution Methods, eds. A. Le Méhauté, C. Rabut and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, 1997) pp. 245–260.

    Google Scholar 

  24. V. Protasov, A complete solution characterizing smooth refinable functions, SIAM J. Math. Anal. 31 (2000) 1332–1350.

    Google Scholar 

  25. Z.W. Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998) 235–250.

    Google Scholar 

  26. G. Strang, Eigenvalues of (↓2)H and convergence of cascade algorithm, IEEE Trans. Signal Processing 44 (1996) 233–238.

    Google Scholar 

  27. G. Strang and T. Nguyen, Wavelets and Filter Banks (Cambridge Press, Wellesley, 1996).

    Google Scholar 

  28. G. Strang and D.X. Zhou, Inhomogeneous refinement equations, J. Fourier Anal. Appl. 4 (1998) 733–747.

    Google Scholar 

  29. L. Villemoes, Wavelet analysis of refinable functions, SIAM J. Math. Anal. 25 (1994) 1433–1460.

    Google Scholar 

  30. Y. Wang, Self-affine tiles, in: Advances in Wavelets, Hong Kong, 1997 (Singapore, 1999) pp. 261–282.

  31. D.X. Zhou, Norms concerning subdivsion sequences and their applications in wavelets, Appl. Comput. Harmon. Anal. 11 (2001) 329–346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S. Characterization of Smoothness of Multivariate Refinable Functions and Convergence of Cascade Algorithms of Nonhomogeneous Refinement Equations. Advances in Computational Mathematics 20, 311–331 (2004). https://doi.org/10.1023/A:1027373528712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027373528712

Navigation