Skip to main content
Log in

The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We use the matrix-valued Fejér–Riesz lemma for Laurent polynomials to characterize when a univariate shift-invariant space has a local orthonormal shift-invariant basis, and we apply the above characterization to study local dual frame generators, local orthonormal bases of wavelet spaces, and MRA-based affine frames. Also we provide a proof of the matrix-valued Fejér–Riesz lemma for Laurent polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aldroubi, Q. Sun and W.-S. Tang, p-frames and shift invariant subspaces of L p, J. Fourier Anal. Appl. 7 (2001) 1–21.

    Google Scholar 

  2. F.M. Callier, On polynomial matrix spectral factorization by symmetric factor extraction, IEEE Trans. Automat. Control 30 (1985) 453–464.

    Google Scholar 

  3. C.K. Chui, W. He and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal. 13 (2002) 224–262.

    Google Scholar 

  4. C.K. Chui, W. He, J. Stöckler and Q. Sun, Compactly supported tight affine frames with integer dilations and maximum vanishing moments, Adv. Comput. Math. 18 (2003) 159–187.

    Google Scholar 

  5. M.C. Davis, Factoring the spectral matrix, IEEE Trans. Automat. Control 8 (1963) 296–305.

    Google Scholar 

  6. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909–996.

    Google Scholar 

  7. I. Daubechies, Ten Lectures on Wavelets, CBMS, Vol. 61 (SIAM, Philadelphia, 1992).

    Google Scholar 

  8. [8] I. Daubechies, B. Han, A. Ron and Z. Shen, MRA-based construction of wavelet frames, Appl. Comput. Harmon. Anal., to appear.

  9. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets, SIAM J. Math. Anal. 27 (1996) 1791–1815.

    Google Scholar 

  10. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Squeezable orthogonal bases and adaptive least squares, in: Wavelet Applications in Signal and Image Processing, eds. Laine and Unser, SPIE Conference Proceedings 3169 (San Diego, CA, 1997) pp. 48–54.

  11. P. Faurre, M. Clerget and F. Germain, Operateur Rationnels Positifs (Dunod, Paris, 1979).

    Google Scholar 

  12. A. Fettweis and A. Kummert, An efficient algorithm for the spectral factorization of rational nonnegative para-Hermitian matrices, AEÑ 46 (1992) 150–156.

    Google Scholar 

  13. I. Gohberg, S.Goldberg and M.A. Kaashoek, Classes of Linear Operators (Birkhäuser, Boston, 1993).

    Google Scholar 

  14. [14] T.N.T. Goodman, A class of orthogonal refinable functions and wavelets, Preprint.

  15. T.N.T. Goodman, C.A.Micchelli, G. Rodriguez and S. Seatzu, Spectral factorization of Laurent polynomials, Adv. Comput. Math. 7 (1997) 429–454.

    Google Scholar 

  16. D.P. Hardin and T.A. Hogan, Refinable subspaces of a refinable space, Proc. Amer. Math. Soc. 128 (2000) 1941–1950.

    Google Scholar 

  17. D.P. Hardin and T.A. Hogan, Constructing orthogonal refinable function vectors with prescribed approximation order and smoothness, in: Proc. of Internat. Conf. on Wavelet Analysis and its Applications, eds. D. Deng, D. Huang, R.-Q. Jia, W. Lin and J.-Z. Wang, AMS/IP Studies in Advanced Mathematics, Vol. 25 (2002) pp. 139–148.

  18. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958) 165–201.

    Google Scholar 

  19. V.A. Jakubovic, Factorization of symmetric matrix polynomials, Dokl. Acad. Nauk SSSR 194 (1970) 532–535.

    Google Scholar 

  20. J. Jezek and V. Kucera, Efficient algorithm for matrix spectral factorization, Automatica J. IFAC 21 (1985) 663–669.

    Google Scholar 

  21. R.-Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: Powers of two, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 209–246.

    Google Scholar 

  22. R.-Q. Jia and C.A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992), 69–75.

    Google Scholar 

  23. A. Petukhov, Explicit construction of framelets, Appl. Comput. Harmon. Anal. 11 (2001) 313–327.

    Google Scholar 

  24. S.U. Pillai and T.I. Shim, Spectrum Estimation and System Identification (1993).

  25. J. Rissanen, Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials, Math. Comp. 27 (1973) 147–154.

    Google Scholar 

  26. M. Rosenblatt, A multi-dimensional prediction problem, Arkiv Math. 3 (1958) 407–424.

    Google Scholar 

  27. M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  28. A.H. Sayed and T. Kailath, A survey of spectral factorization methods, Numer. Linear Algebra Appl. 8 (2001) 467–496.

    Google Scholar 

  29. Q. Sun, N. Bi and D. Huang, An Introduction to Multi-band Wavelets (Zhejiang Univ. Press, Hangzhou, China, 2001).

    Google Scholar 

  30. N. Wiener, Extrapolation, Interpolation and Smoothness of Stationary Time Series with Engineering Applications (MIT Press, Cambridge, MA, 1949).

    Google Scholar 

  31. N. Wiener and E.J. Akutowicz, A factorization of positive Hermitian matrices, J. Math. Mech. 8 (1959) 111–120.

    Google Scholar 

  32. D.C. Youla, On the factorization of rational matrices, IRE Trans. Inform. Theory 7 (1961) 172–189.

    Google Scholar 

  33. D.C. Youla and N.N. Kazanjian, Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle, IEEE Trans. Circuit Systems 25 (1978) 57–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardin, D.P., Hogan, T.A. & Sun, Q. The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces. Advances in Computational Mathematics 20, 367–384 (2004). https://doi.org/10.1023/A:1027389826705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027389826705

Navigation