Skip to main content
Log in

On the Modeling of Passive Motion of the Human Knee Joint by Means of Equivalent Planar and Spatial Parallel Mechanisms

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Recent literature in biomechanics has demonstrated that motion of the human knee joint in virtually unloaded conditions is guided in a single and complex path by the passive structures of the joint alone. It has been deduced that the joint behaves as a single degree of freedom mechanism. Early models, dated on beginning of this century, showed this in the sagittal plane only. The three dimensional motion has been recently modelled by means of equivalent parallel mechanisms, based also on experimental observations on knee specimens of two separate frictionless contacts and three isometric ligament fibres.

The model of the joint is a key tool for a deeper understanding of the knee motion and the design of reliable and efficient prostheses. It also provides useful information for the planning of surgical intervention on the basic structures of the knee.

The progress of this modelling is reported in this paper. A medical and biomechanical rationale for these studies is provided, together with a number of relevant publications. The pioneering planar four-bar linkage has been initially advanced to a single degree of freedom equivalent spatial mechanism characterised by plane-to-sphere contacts. The closure equations for this mechanism have been progressively simplified. Extensions to more complex articular surfaces have been also performed. The results reported for all these models demonstrate that the original model assumptions were valid and that refinements in articular surface descriptions are justified to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andriacchi, T.P., Mikosz, R.P., Hampton, S.J., and Galante, J.O. 1983. Model studies of the stiffness characteristics of the human knee joint. Journal of Biomechanics, 16(1):23-29.

    Google Scholar 

  • Blankevoort, L., Huiskes, R., and De Lange, A. 1988. The envelope of passive knee joint motions. Journal of Biomechanics, 21(9):705-720.

    Google Scholar 

  • Blankevoort, L., Huiskes, R., and De Lange, A. 1990. Helical axes of passive knee joint motions. Journal of Biomechanics, 23(12):1219-1229.

    Google Scholar 

  • Blankevoort, L., Kuiper, J.H., Huiskes, R., and Grootenboer, H.J. 1991. Articular contact in a three-dimensional model of the knee. Journal of Biomechanics 11(11):1019-1031.

    Google Scholar 

  • Borelli, G.A. 1679. De Motu Animalium. (English translation: Maquet P., Springer-Verlag, Berlin, 1989).

  • Bugnon, E. 1892. Le mécanisme du Genou. Lausanne, CH Viret-Genton.

    Google Scholar 

  • Collins, J.J. and O'Connor, J.J. 1991. Muscle-ligament interactions at the knee during walking. EngMedH, 205:11-18.

    Google Scholar 

  • Di Gregorio, R. and Parenti-Castelli, V. 2000. A spatial mechanism with higher pairs for modelling the human knee joint. In ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC). Paper No.DETC 2000/MECH-14156. Baltimore, Maryland, Sept. 10-13.

  • Di Gregorio, R. and Parenti-Castelli, V. 2003. A spatial mechanism with higher pairs for modelling the human knee joint. J. Biomech. Eng. Transactions of the ASME, 125:232:237.

    Google Scholar 

  • Essinger, J.R., Leyvraz, P.F., Heegard, J.H., and Robertson, D.D. 1989. A mathematical model for the evaluation of the behaviour during flexion of condilar-type knee prosthesis. Journal of Biomechanics, 22(11/12):1229-1241.

    Google Scholar 

  • Feikes, J.D. 1998. Articular surface representation in a 3-D model of knee mobility. In Proc. of European Society of Biomechanics, Toulouse, France, July 8-11, Journal of Biomechanics, Vol. 31, Suppl. 1, p. 148.

  • Feikes, J.D. 1999. The Mobility and Stability of the Human Knee Joint. DPhil Thesis, University of Oxford.

  • Feikes, J.D., O'Connor, J.J., and Zavatsky, AB. 2003. A constraintbased approach to modelling the mobility of the human knee joint. Journal of Biomechanics, 36(1):125-129.

    Google Scholar 

  • Fick, R. 1911. Mechanik des Gelenkes, in Handbuch del Anatomie und Mechanik der Gelenke. Jena, Gustav Fischer.

    Google Scholar 

  • Fischer, O. 1907. Kinematik Organischer Gelenke. Braunschweig, F. Vieweg und Sohn.

  • Fuss, S.K. 1989. Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint. American Journal of Anatomy, 184:165-176.

    Google Scholar 

  • Gill, H.S. and O'Connor, J.J. 1996. Biarticulating two-dimensional computer model of the human patellofemoral joint. Clinical Biomechanics, 11(2):81-89.

    Google Scholar 

  • Goodfellow, J.W. and O'Connor, J.J. 1978. The mechanics of the knee and prosthesis design. Journal of Bone Joint Surgery [Br], 60-B:358-369.

    Google Scholar 

  • Goodfellow, J.W., Tibrewal, S.B., Sherman, K.P., and O'Connor, J.J. 1987. Unicompartmental Oxford Meniscal knee arthroplasty. J Arthroplasty, 2(1):1-9.

    Google Scholar 

  • Grood, E.S. and Suntay,W.J. 1983. A joint coordinate system for the clinical description of three-dimensional motion: Application to the knee. ASME Journal of Biomechanical Engineering, 105:136-144.

    Google Scholar 

  • Hefzy, M.S. and Cooke, T.D.V. 1996. Review of knee models: 1996 update. Appl. Mech. Rev., 49(10, part 2):187-193.

    Google Scholar 

  • Hill, P.F., Vedi, V., Williams, A., Iwaki, H., Pinskerova, V., and Freeman, M.A. 2000. Tibiofemoral movement 2: The loaded and unloaded living knee studied by MRI. J. Bone. Joint. Surg. Br., 82(8):1196-1198.

    Google Scholar 

  • Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W., and Lupichuck, A.G. 1993. The axes of rotation of the knee. Clinical Orthopaedics and Related Research, 290:259-268.

    Google Scholar 

  • Hunt, K.H. 1978. Kinematic Geometry of Mechanisms. Oxford University Press, Oxford.

    Google Scholar 

  • Huson, A. 1982. Perspectives in human-joint kinematics Biomechanics, principles and application: Development in Biomechanics. In Selected Proc. of 3rd ESB Meeting Part 1, Huiskes R., Van Campen, and De Wijn (Eds.), Martinus Nijhoff, pp. 31-46.

  • Huson, A. 1983. Morphology and technology. Acta Morph Neer-Scand, 21:69-81.

    Google Scholar 

  • Huson, A. 1984. Mechanics of joints. Int. J. Sports Med., 5:83-87.

    Google Scholar 

  • Huss, R.A., Holstein, H., and O'Connor, J.J. 1999. The effect of cartilage deformation on the laxity of the knee joint. Proc. Inst. Mech. Eng. [H], 213(1):19-32.

    Google Scholar 

  • Huss, R.A., Holstein, H., and O'Connor, J.J. 2000. A mathematical model of forces in the knee under isometric quadriceps contractions. Clinical Biomechanics, 15(2):112-122.

    Google Scholar 

  • Imran, A. and O'Connor, J.J. 1996a. Computer simulation of surgical malplacement of an unconstrained unicompartmental knee prosthesis with cruciates intact. British Orthopaedic Research Society, Brighton.

    Google Scholar 

  • Imran, A. and O'Connor, J.J. 1996b. The effect of tibial surface curvature on cruciate ligament loading. Journal of Bone Joint Surgery-B, 78-B:S1:34.

    Google Scholar 

  • Imran, A., Huss, R.A., Holstein, H., and O'Connor, J.J. 2000. The variation in the orientations and moment arms of the knee extensor and flexor muscle tendons with increasing muscle force: A mathematical analysis. Proc. Inst. Mech. Eng. [H], 214(3):277-286.

    Google Scholar 

  • Iwaki, H., Pinskerova, V., and Freeman, M.A. 2000. Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Joint Surg. Br., 82(8):1189-1195.

    Google Scholar 

  • Kapandji, I.A. 1970. The Physiology of the Joints. Vol. 2: The lower limb. Churchill Livingstone, 2nd.

  • Karrholm, J., Brandsson, S., and Freeman, M.A. 2000. Tibiofemoral movement 4: Changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. J. Bone Joint Surg. Br., 82(8):1201-1203.

    Google Scholar 

  • Kurosawa, H., Walker, P.S., Abe, S., Garg, A., and Hunter, T. 1985. Geometry and motion of the knee for implant and orthotic design. Journal of Biomechanics, 18(7):487-499.

    Google Scholar 

  • Langer, K. 1858. Das Kniegelenk des Menschen. In Sitzungsberichte der Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, Bde 2, 3. Wien, Karl Gerolds Sohn, p. 99.

    Google Scholar 

  • Leardini, A., O'Connor, J.J., Catani, F., and Giannini, S. 1999a. Kinematics of the human ankle complex in passive flexion-A single degree of freedom system. J. Biomech., 32:111-118.

    Google Scholar 

  • Leardini, A., O'Connor, J.J., Catani, F., and Giannini, S. 1999b. A geometric model of the human ankle joint. J. Biomech., 32:585-591.

    Google Scholar 

  • Leardini, A., Stagni, R., and O'Connor, J.J. 2001. Mobility of the subtalar joint in the intact ankle complex. J. Biomech., 34(6):805-809.

    Google Scholar 

  • Lu, T.-W. 1997a. Geometric and Mechanical Modelling of the Human Locomotor System. University of Oxford.

  • Lu, T.-W., O'Connor, J.J., Taylor, S.J.G., and Walker, P.S. 1997b. Validation of a lower limb model with in-vivo femoral forces telemetered from two subjects. Journal of Biomechanics, 31:63-69.

    Google Scholar 

  • Martelli, S., Zaffagnini, S., Falcioni, B., and Marcacci, M. 2000. Intraoperative kinematic protocol for knee joint evaluation. Computer Methods and Programs in Biomedicine, 62:77-86.

    Google Scholar 

  • Martelli, S. and Pinskerova, V. 2002. The shapes of the tibial and femoral articular surfaces in relation to tibiofemoral movement. J. Bone Joint Surg. B, 84(4):607-613.

    Google Scholar 

  • Martelli, S. 2003. New method for simultaneous anatomical and functional studies of articular joints and its application to the human knee. Comput. Methods. Programs. Biomed., 70(3):223-240.

    Google Scholar 

  • Michelson, J.D., Schmidt, G.R., and Mizel, M.S. 2000. Kinematics of a total arthroplasty of the ankle: Comparison to normal ankle motion. Foot & Ankle Int., 21(4):278-284.

    Google Scholar 

  • Mommersteeg, T.J.A., Huiskes, R., Blankevoort, L., Kooloos, J.G.M., and Kauer, J.M.G. 1997. An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles. J. Biomechanics, 30:139-146.

    Google Scholar 

  • Murray, D.W., Goodfellow, J.W., and O'Connor, J.J. 1998. The Oxford medial Unicompartmental arthroplasty: A ten-year survival study. J. Bone Joint Surg., 80-B:983-989.

    Google Scholar 

  • Nakagawa, S., Kadoya, Y., Todo, S., Kobayashi, A., Sakamoto, H., Freeman, M.A., and Yamano, Y. 2000. Tibiofemoral movement 3: Full flexion in the living knee studied by MRI. J. Bone Joint Surg. Br., 82(8):1199-1200.

    Google Scholar 

  • O'Connor, J.J., Shercliff, T.L., Biden, E., and Goodfellow, J.W. 1989. The geometry of the knee in the sagittal plane. In Proceedings, Institute of Mechanical Engineering Part H. Journal of Engineering in Medicine, 203:223-233.

    Google Scholar 

  • O'Connor, J.J., Shercliff, T., FitzPatrick, D., Bradley, J., Daniel, D., Biden, E., and Goodfellow, J. 1990a. Geometry of the knee. In Knee Ligaments: Structure, Function, Injury, and Repair, D.M. Daniel, W.H. Akeson, and J.J. O'Connor (Eds.), Raven Press: New York, pp. 163-200.

    Google Scholar 

  • O'Connor, J.J., Shercliff, T., FitzPatrick, D., Biden, E., and Goodfellow, J. 1990b. Mechanics of the knee. In Knee Ligaments: Structure, Function, Injury, and Repair, D.M. Daniel, W.H. Akeson, and J.J. O'Connor (Eds.), Raven Press: New York, pp. 201-238.

    Google Scholar 

  • O'Connor, J.J., Lu, T.W., Feikes, J., and Leardini, A. 1998. Diarthrodial joints: Kinematic pairs, mechanical or flexible structures? Computer Methods in Biomechanics and Biomedical Engineering, 1:123-150.

    Google Scholar 

  • O'Connor, J.J., Feikes, J., Gill, H.S., and Zavatsky, A.Z. 2003a. Mobility of the knee. In Daniel's Knee Injuries: Ligament and Cartilage Structure, Function, Injury, and Repair, Robert, A., Pedowitz, John, J. O'Connor, andWayne, H., Akeson (Eds.), Lippincott Williams & Wilkins, II Edition.

  • O'Connor, J.J., Zavatsky, A.Z., and Gill, H.S. 2003b. Stability of the knee. In Daniel's Knee Injuries: Ligament and Cartilage Structure, Function, Injury, and Repair. Robert A. Pedowitz, John J. O'Connor, and Wayne H. Akeson (Eds.), Lippincott Williams & Wilkins, II Edition.

  • Parenti-Castelli, V. and Di, Gregorio, R. 2000. Parallel mechanisms applied to the human knee passive motion simulation. Advances in Robot Kinematics, J. Lenarcic and M. Stanisic (Eds.), Kluwer Academic Publishers, ISBN 0-7923-6426-0:333-344, June 26-30, Piran-Portoroz, Slovenia.

  • Pennock, G.R. and Clark, K.J. 1990. An anatomy-based coordinate system for the description of the kinematic displacements in the human knee. Journal of Biomechanics, 23:1209-1218.

    Google Scholar 

  • Piazza, S.J. and Cavanagh, P.R. 2000. Measurement of the screwhome motion of the knee is sensitive to errors in axis alignment. J Biomech, 33:1029-1034.

    Google Scholar 

  • Pinskerova,V., Maquet, P., and Freeman, M.A. 2000. Writings on the knee between 1836 and 1917. J. Bone Joint Surg. Br., 82(8):1100-1102.

    Google Scholar 

  • Pio, A., Carminati, L., Stennardo, G., and Pedrotti, L. 1998. Evolution of the concepts of functional anatomy of the knee joint. Chirurgia Organi Mov,LXXXIII:401-411.

    Google Scholar 

  • Psychoyios, V., Crawford, R.W., O'Connor, J.J., and Murray, D.W. 1998. Wear of congruent meniscal bearings in unicompartmental knee arthroplasty. J. Bone Joint Surg., 80-B:976-982.

    Google Scholar 

  • Rahman, E.A. and Hefzy, M.S. 1993. A two-dimensional dynamic anatomical model of the human knee joint. ASME Journal of Biomechanical Engineering, 115:357-365.

    Google Scholar 

  • Rovick, J.S., Reuben, J.D., Schrager, R.J., and Walker, P.S. 1991, Relation between knee motion and ligament length patterns. Clinical Biomechanics, 6(4):213-220.

    Google Scholar 

  • Strasser, H. 1917. Lehrbuch der Muskel-und Gelenkmechanik. Springer, Berlin.

    Google Scholar 

  • Svard, U.C. and Price, A.J. 2001. Oxford medial unicompartmental knee arthroplasty. A survival analysis of an independent series. J. Bone Joint Surg. Br., 83(2):191-194.

    Google Scholar 

  • Toutoungi, D.E., Lu, T.W., Leardini, A., Catani, F., and O'Connor, J.J. 2000. Cruciate ligament forces in the human knee during rehabilitation exercises. Clinical Biomechanics, 15(3):176-187.

    Google Scholar 

  • Tumer, T.S. and Engin, A.E. 1993. Three-body segment dynamic model of the human knee. ASME Journal of Biomechanical Engineering, 115:350-356.

    Google Scholar 

  • Weber, W. and Weber, E. 1991. Mechanics of the Human Walking AApparatus. Springer-Verlag: New York (translated from German by P. Maquet and R. Furlong-from original work in 1836).

    Google Scholar 

  • Wilson, D.R. 1996. Three-Dimensional Kinematics of the Knee. University of Oxford.

  • Wilson, D.R. and O'Connor, J.J. 1997. A three-dimensional geometric model of the knee for the study of joint forces in gait. Gait and Posture, 5:108-115.

    Google Scholar 

  • Wilson, D.R., Feikes, J.D., and O'Connor, J.J. 1998. Ligaments and articular surfaces guide passive knee flexion. J Biomech, 31:1127-1136.

    Google Scholar 

  • Wilson, D.R., Feikes, J.D., Zavatsky, A.B., and O'Connor, J.J. 2000. The components of passive knee movement are coupled to flexion angle. J. Biomech., 33(4):465-473.

    Google Scholar 

  • Wismans, J., Velpaus, F., Janssen, J., Huson, A., and Struben, P. 1980. A three-dimensional mathematical model of the knee-joint. Journal of Biomechanics, 13:677-685.

    Google Scholar 

  • Zavatsky, A.B. and O'Connor, J.J. 1992. A model of human knee ligaments in the sagittal plane: Part I. Response to passive flexion. Proc. Inst. Mech. Eng. [H], 206:125-134.

    Google Scholar 

  • Zavatsky, A.B. and O'Connor, J.J. 1992. A model of human knee ligaments in the sagittal plane: Part II. Fibre recruitment under load. Proc. Inst. Mech. Eng. [H], 206:135-145.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parenti-Castelli, V., Leardini, A., Di Gregorio, R. et al. On the Modeling of Passive Motion of the Human Knee Joint by Means of Equivalent Planar and Spatial Parallel Mechanisms. Autonomous Robots 16, 219–232 (2004). https://doi.org/10.1023/B:AURO.0000016867.17664.b1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AURO.0000016867.17664.b1

Navigation