Skip to main content
Log in

Approximate String Matching Using Deformed Fuzzy Automata: A Learning Experience

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

Deformed fuzzy automata are complex structures that can be used for solving approximate string matching problems when input strings are composed by fuzzy symbols. Different string similarity definitions are obtained by the appropriate selection of fuzzy operators and parameters involved in the calculus of the automaton transitions. In this paper, we apply a genetic algorithm to adjust the automaton parameters for selecting the ones best fit to a particular application. This genetic approach overcomes the difficulty of using common optimizing techniques like gradient descent, due to the presence of non-derivable functions in the calculus of the automaton transitions. Experimental results, obtained in a text recognition experience, validate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrain, J. J., J. R. Garitagoitia, J. Villadangos, F. Farinã, A. Córdoba, and J. R. González de Mendívil. (2002). “An Imperfect String Matching Experience Using Deformed Fuzzy Automata,''. In Frontiers in Artificial Intelligence and Applications, Soft Computing Systems, Vol. 87. The Netherlands: IOS Press, 115–123.

    Google Scholar 

  • Bunke, H. and J. Csirik. (1995). “Parametric String Edit Distance and its Application to Pattern Recognition,” IEEE Transactions on Systems, Man and Cybernetics 25(1), 202–20

    Google Scholar 

  • Chen, W.-T., P. Gader, and H. Shi. (1999). “Lexicon-Driven Handwritten Word Recognition Using Optimal Linear Combinations of Order Statistics,” IEEE PAMI 21(1), 77–82.

    Google Scholar 

  • Echanobe, J., J. R. González de Mendívil, J. R. Garitagoitia, and C.F. Alastruey. (1998). “Deformed Systems for Contextual Postprocessing,” Fuzzy Sets and Systems 96, 335–341.

    Google Scholar 

  • Gader, P., M. Mohamed, and J. H. Chiang. (1995). “Comparison of Crisp and Fuzzy Character Neural Networks in Handwritten Word Recognition,” IEEE Transactions on Fuzzy Systems 3(3), 357–510.

    Google Scholar 

  • Garitagoitia, J. R., J. R. González de Mendívil, J. Echanobe, J. J. Astrain, and F. Farinã. (2003). “Deformed Fuzzy Automata for Correcting Imperfect Strings of Fuzzy Symbols,” IEEE Transactions on Fuzzy Systems 11(3), 299–310.

    Google Scholar 

  • Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Massachusetts, USA: Addison-Wesley Publishing Company.

    Google Scholar 

  • González de Mendívil, J. R., J. R. Garitagoitia, and J. J. Astrain. (2000). “Fuzzy Automata for Imperfect String Matching,” In Proceedings of ESTYLF 2000, Sevilla (Spain), 527-532.

  • Hull, J. J., S. N. Srihari, and R. Choudhari. (1983). “An Integrated Algorithm for Text Recognition: Comparison with a Cascated Algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence 5(4), 384–395.

    Google Scholar 

  • Klir, G. J. and B. Yuan. (1995). In Fuzzy Sets and Fuzzy Logic: Theory and Applications. New Jersey, USA: Prentice Hall.

    Google Scholar 

  • Kucera, H. and W. N. Francis. (1967). In Computational Analysis of Present-Day American English. Providence, USA: RI Brown Univ. Press.

    Google Scholar 

  • Levenshtein, V. I. (1966). “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,” Soviet Physics Docklady 10(8), 707–710.

    Google Scholar 

  • Marzal, A. and E. Vidal. (1993). “Computation of Normalized Edit Distance and Applications,” IEEE PAMI 15(9), 926–932.

    Google Scholar 

  • Negoita, C. V. and D. A. Ralescu. (1975). In Application of Fuzzy Sets to System Analysis. Basilea, Switzerland: Birkaeuser.

    Google Scholar 

  • Oommen, B. J. and R. L. Kashyap. (1998). “A Formal Theory for Optimal and Information Theoretic Syntactic Pattern Recognition,” Pattern Recognition 31(8), 1157–1177.

    Google Scholar 

  • Reina, R., J. R. González de Mendívil, and J. R. Garitagoitia. (1992). “Improved Character Recognition System based on a Neural Network Incorporating the context via Fuzzy Automata,” Proceedings of 2nd International Conference on Fuzzy Logic and Neural Networks (IIZUKA'92), 1143-1146. Iizuka (Japan).

  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams. (1986). “Learning Internal Representations by Error Propagation,” In Rumelhart and McClelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1 Foundations. Massachusetts, USA: MIT Press.

    Google Scholar 

  • Sankoff, D. and J. B. Kruskal. (1983). Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison. Reading, Massachusetts, USA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Wagner, R. A. and M. J. Fischer. (1974). “The String-to-String Correction Problem,” Journal of ACM 21(1), 168–173.

    Google Scholar 

  • Xu, L., A. Krzyzak and C. Y. Suen. (1992). “Methods for Combining Multiple Classifiers and Their Applications to Handwritting Recognition,” IEEE Transactions on Systems Man and Cybernetics. (SMC) 22(3), 418–435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astrain, J.J., Garitagoitia, J.R., Gonzalez De Mendivil, J.R. et al. Approximate String Matching Using Deformed Fuzzy Automata: A Learning Experience. Fuzzy Optimization and Decision Making 3, 141–155 (2004). https://doi.org/10.1023/B:FODM.0000022042.64558.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FODM.0000022042.64558.1d

Navigation