Skip to main content
Log in

The Story of the GeoToolKit—An Object-Oriented Geodatabase Kernel System

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

The quickly increasing number of spatio-temporal applications in fields like environmental monitoring, geology and mobile communication is a new challenge to the development of geodatabases. However, the query functionality of today's geo-information systems is still limited to the thematic attributes of spatial objects and to spatial 2-D objects. This article reports on GeoToolKit, an object-oriented geo-database kernel system developed at Bonn University to support 3-D/4-D geological applications. GeoToolKit is not a GIS-in-a-box package, but rather a library of C ++ classes that allows the incorporation of spatio-temporal functionality within an application. Being a component toolkit, it encourages the development and deployment of re-usable and open software. The history, concepts and implementation of GeoToolKit are discussed in detail. Performance tests underline the practicability of the concepts. Extensions to and experiences with GeoToolKit applications like GeoStore, GeoWeb and WellStore are presented. Finally, we give an outlook on our future research introducing GeoToolKit as a 3-D/4-D database component within a network of distributed and mobile geo-information services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alms, O. Balovnev, M. Breunig, A.B. Cremers, T. Jentzsch, and A. Siehl. “Space-time modelling of the Lower Rhine Basin supported by an object-oriented database,” Physics and Chemistry of the Earth, Vol. 23(3):251-260, 1998.

    Google Scholar 

  2. O. Balovnev, M. Breunig, A.B. Cremers, and S. Shumilov. “GeoToolKit: opening the access to object-oriented Geodata Stores,” in M. Goodchild, M. Egenhofer, R. Fegeas, and C. Kottman (Eds.), Inter-operating Geographic Information Systems, Kluwer Academic Publishers: Boston, 10pp, 1999.

    Google Scholar 

  3. O. Balovnev, M. Breunig, and A.B. Cremers. “From GeoStore to GeoToolKit: The second step,” in Lecture Notes in Computer Science, Vol. 1262:223-237, Springer: Heidelberg, 1997.

    Google Scholar 

  4. O. Balovnev, M. Breunig, A.B. Cremers, and M. Pant. “Building geo-scientic applications on top of geotoolkit: A case study of data integration,” in Proc. 10th Int. Conference on Scientic and Statistical Database Management, 260-269, 1998.

  5. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. “The R*-tree: An efficient and robust access method for points and rectangles,” in Proc. ACM SIGMOD, Atlantic City, N.Y., 322-331, 1990.

  6. T. Bode, M. Breunig, and A.B. Cremers. “First experiences with GEOSTORE, an information system for geologically defined geometries,” in Proc. IGIS494, Int: Workshop on Advanced Research in Geographic Information Systems, Monte Verita, Ascona, Switzerland, LNCS No. 884, 35-44, Springer: Berlin, 1994.

    Google Scholar 

  7. M. Breunig, T. Bode, and A.B. Cremers. “Implementation of elementary geometric database operations for a 3D-GIS,” in Proc. 6th Int. Symposium on Spatial Data Handling, Edinburgh, 604-617, 1994.

  8. M. Breunig, A.B. Cremers, W. Müller, and J. Siebeck. “New methods for topological clustering and spatial access in object-oriented 3D databases,” in Proc. ACM Int. Symposium on Advances in Geographic Information Systems, 8pp, 2001.

  9. M. Breunig, C. Türker, H. Böhlen, S. Dieker, R.H. Güting, C.S. Jensen, L. Relly, P. Rigaux, H.J. Schek, and M. Scholl. “Architecture and implementations of spatio-temporal database management systems,” in Spatio-Temporal Databases—The Chorochronos Approach. Lecture Notes in Computer Sciences, Vol. 2520:219-264, Springer-Verlag: Heidelberg, 2003.

    Google Scholar 

  10. M. Breunig, A.B. Cremers, H.-J. Götze, S. Schmidt, R. Seidemann, S. Shumilov, and A. Siehl. “First steps towards an interoperable 3D GIS—an example from southern Lower Saxony, Germany,” Physics and Chemistry of the Earth, Part A, Vol. 24(3):179-190, 1999.

    Google Scholar 

  11. M. Breunig, A.B. Cremers, H.-J. Götze, S. Schmidt, R. Seidemann, S. Shumilov, and A. Siehl. “Geological mapping based on 3D models using an interoperable geo-information-system,” Journal for Spatial Information and Decision Making, ISSN 0935-1523, Vol. 13:12-18, 2000.

    Google Scholar 

  12. T. Brinkhoff. “Requirements of traffic telematics to spatial databases,” in Proc. 6th Intern. Symposium on Large Spatial Databases, Hong Kong, China. Lecture Notes in Computer Science, Vol. 1651:365-369, 1999.

    Google Scholar 

  13. M.J. Egenhofer, A.U. Frank, and J.P. Jackson. “A topological data model for spatial databases,” in Proc. ACM SIGMOD, LNCS 409, Springer: Berlin, 1989.

    Google Scholar 

  14. D. Fellner. “Extensible image synthesis,” in P. Wisskirchen (Ed.), Object-Oriented and Mixed Programming Paradigms, 7-21, Springer, 1996.

  15. H.-J. Götze and B. Lahmeyer. “Application of three-dimensional interactive modelling in gravity and magnetics,” Geophysics, Vol. 53(8):1096-1108, 1988.

    Google Scholar 

  16. GRAPE. “Graphics Programming Environment,” Manual Version 5.3, SFB 256, IAM Bonn, http://www.iam.uni-bonn.de/sfb256/grape

  17. R.H. Güting. “An introduction to spatial database systems,” VLDB Journal, Vol. 3(4) October, 1994.

  18. R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentos, M. Schneider, and M. Vazirgiannis. “A foundation for representing and querying moving objects,” ACM Transactions on Database Systems, Vol. 25(1):1-42, March, 2000.

    Google Scholar 

  19. A. Guttman. “R-trees: a dynamic index structure for spatial searching,” in Proc. ACM SIGMOD, Boston (MA), 47-57, 1984.

  20. H. Hoppe, “Progressive meshes,” in Proc. SIGGRAPH'96, 99-108, Addison Wesley, 1996.

  21. T. Jentzsch and A. Siehl. “Kinematic subsidence modeling of the Lower Rhine Basin,” Netherlands Journal of Geosciences/Geol. Mijnbouw, Vol. 81(2):231-239, 2002.

    Google Scholar 

  22. M.C. Lin and J.F. Canny. “A fast algorithm for incremental distance calculation,” in IEEE Int. Conference on Robotics and Automation, 1991.

  23. J.-L. Mallet. “GOCAD: a computer aided design program for geological applications,” in A.K. Turner (Ed.), Three-Dimensional Modeling with Geoscientific Information Systems, NATO ASI 354, Kluwer Academic Publishers: Dordrecht, 123-142, 1992.

    Google Scholar 

  24. J.-L. Mallet. Geomodeling. Oxford University Press, 599pp, 2002.

  25. J. Nievergelt and P. Widmayer. “Spatial data structures: Concepts and design choices,” in Algorithmic Foundations of Geographic Information Systems, LNCS Tutorial No. 1340: 153-197, Springer: Berlin, 1997.

    Google Scholar 

  26. J. Nievergelt, H. Hinterberger, and C.K. Sevczik. “The GRID FILE: An adaptable, symmetric multi-key file structure,” ACM Transactions on Database Systems, Vol. 9(1):38-71, 1984.

    Google Scholar 

  27. OGC (2001): http://www.ogis.org

  28. “Object Management Group”, CORBA 2.3/IIOP Specification. OMG formal document, 1999.

  29. K. Polthier and M. Rumpf. “A concept for time-dependent processes,” in Goebel et al. (Eds.), Visualization in Scientific Computing, 137-153, Springer: Vienna, 1994.

    Google Scholar 

  30. N. Rossopoulos, S. Kelly, and F. Vincent. “Nearest neighbor queries,” in Proc. ACM-SIGMOD, 1995.

  31. D. Rouby, Th. Souriot, J.P. Brun, and P.R. Cobbold. “Displacements, strains, and rotations within the afar depression (Djibouti) from restoration in map view,” Tectonics, Vol. 15(5), 1996.

  32. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented Modelling and Design. Prentice Hall: New Jersey, 1991.

    Google Scholar 

  33. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley: Reading, 1990.

    Google Scholar 

  34. W. Schroeder, K. Martin, and W. Lorensen. The Visualization Toolkit: An Object-oriented Approach to 3D Graphics. Prentice Hall, 1997.

  35. T. Sellis. “Research issues in spatio-temporal database systems,” in Proc. 6th Int. Symposium on Large Spatial Databases, Hong Kong, China. In Lecture Notes in Computer Science, Vol. 1651, Springer Verlag, 5-11, 1999.

    Google Scholar 

  36. S. Shumilov. “Integrating existing object-oriented databases with distributed object management platforms. Developed and evaluated on the example of ODBMS ObjectStore and CORBA,” Ph.D. Thesis, University of Bonn, Department of Computer Science III, 2003.

  37. S. Shumilov and A.B. Cremers. “eXtensible Database Adapter—a framework for CORBA/ODBMS integration,” in Proc. 2nd Int. Workshop on Computer Science and Information Technologies (CSIT'00), Ufa, Russia, 2000.

  38. S. Shumilov and J. Siebeck. “Database support for temporal 3D data: extending the GeoToolKit,” in Proc. 7th EC-GI & GIS Workshop, Potsdam, Germany, 2001.

  39. S. Shumilov, A. Thomsen, A.B. Cremers, and B. Koos. “Management and visualization of large, complex and time-dependent 3D objects in distributed GIS,” in Proc. 10th ACM Int. Symposium on Advances in Geographic Information Systems, McLean, USA, November, 2002.

  40. A. Siehl. “Interaktive geometrische Modellierung geologischer Flächen und Körper,” in Die Geowissenschaften, Vol. 11(10–11):343-346, Berlin, 1993.

    Google Scholar 

  41. A. Siehl, O. Rüber, M. Valdivia-Manchego, and J. Klaff. “Geological maps derived from interactive spatial modeling,” in R. Vinken (Ed.). Geolog. Jb., From Digital Map Series in Geosciences to Geo-Information Systems, Vol. 11:273-289, 1998.

  42. A. Siehl and A. Thomsen. “Scale problems in geometric-kinematic modelling of geological objects,” in H.-J. Neugebauer and C. Simmer (Eds.). Dynamics of Multiscale Earth Systems. Lecture Notes in Earth Sciences 97, Springer, 291-306, 2003.

  43. R.T. Snodgrass, M.H. Böhlen, C.S. Jensen, and A. Steiner. “Adding transaction time to SQL/temporal,” ANSI X3H2-96-152r, ISO-ANSI SQL/Temporal Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-143, May, 1996.

  44. R.T. Snodgrass, M.H. Böhlen, C.S. Jensen, and A. Steiner. “Adding valid time to SQL/temporal,” ANSI X3H2-96-152r1, ISO-ANSI SQL/Temporal Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-142, May, 1996.

  45. C. Szyperski. Component Software—Beyond Object-oriented Programming. Addison-Wesley: Essex, England, 1988.

    Google Scholar 

  46. A. Thomsen, T. Jentzsch, and A. Siehl. “Towards a balanced kinematic model of a faulted domain in the lower rhine graben,” in Proc. GOCAD ENSG Conference: 3D Modeling of Natural Objects—A Challenge for the 2000's, Nancy, France, 12, 1998.

  47. A. Thomsen and A. Siehl. “Towards a balanced 3D kinematic model of a faulted domain—the Bergheim open pit mine, Lower Rhine Basin,” Netherlands Journal of Geosciences/Geol. Mijnbouw, Vol. 81(2):241-250, 2002.

    Google Scholar 

  48. E. Tossebro and R.H. Güting. “Creating representations for continously moving regions from observations,” in Proc. of the Intern. Symposium on Spatio-temporal databases SSTD, 2001.

  49. “VRML—The virtual reality modelling language,” Part 1 of ISO/IEC 14772-1:1997, 1997.

  50. M.-F. Worboys. “A model for spatio-temporal information,” in Proc. 5th Int. Symposium on Spatial Data Handling, Charleston, SC, Vol. 1:602-611, 1992.

    Google Scholar 

  51. M.-F. Worboys. “A unified model for spatial and temporal information,” Computer Journal, Vol. 37(1), 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balovnev, O., Bode, T., Breunig, M. et al. The Story of the GeoToolKit—An Object-Oriented Geodatabase Kernel System. GeoInformatica 8, 5–47 (2004). https://doi.org/10.1023/B:GEIN.0000007723.77851.8f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GEIN.0000007723.77851.8f

Navigation