Skip to main content
Log in

Comparison of correlation vector methods for ligand-based similarity searching

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Correlation vector methods were tested for their usefulness in ligand-based virtual screening. Three molecular descriptors – two based on potential pharmacophore points and one on partial atom charges – and three similarity measures – the Manhattan distance, the Euclidian distance and the Tanimoto coefficient – were compared. The alignment-free descriptors seem to be particularly applicable when a course-grain filtering of data sets is required in combination with a high execution speed. Significant enrichment of actives was obtained by retrospective analysis. The cumulative percentages for all three descriptors allow for the retrieval of up to 78% of the active molecules in the first five percent of the reference database. Different descriptors retrieved only weakly overlapping sets of active molecules among the top-ranking compounds. If a single similarity index is to be used, the Manhattan distance seems to be particularly applicable. Generally, none of the three different descriptors tested in this study clearly outperformed the others. The suitability of a descriptor critically depends on the ligand-receptor interaction under investigation. For ligand-based similarity searching it is recommended to exploit several descriptors in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnard, J.M., Downs, G.M. and Willett, P. Descriptor-Based Similarity Measures for Screening Chemical Databases, in Böhm, H.J., and Schneider, G. (Eds.) Virtual Screening of bioactive Molecules, Wiley-VCH 2000, Weinheim, New York, 59-80.

  2. Schneider, G. and Nettekoven, M., J. Comb. Chem., 5 (2003) 233.

    PubMed  Google Scholar 

  3. Schuffenhauer A., Floersheim P., Acklin P. and Jacoby E., J. Chem. Inf. Comput. Sci., 43 (2003) 391.

    PubMed  Google Scholar 

  4. Stahl, M., Rarey, M. and Klebe, G., Screening of drug databases, in Lengauer, T. (Ed.) Bioinformatics: From Genomes to Drugs Vol. 2, Wiley-VCH 2001, Weinheim, New York, 137-170.

  5. Broto, P., Moreau, G. and Vandyke, C., Eur. J. Med. Chem., 19 (1984) 66.

    Google Scholar 

  6. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 36 (1996) 1205.

    PubMed  Google Scholar 

  7. Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J. and Polanski, J., J. Comput. Aided Mol. Des., 10 (1996) 521.

    PubMed  Google Scholar 

  8. Zupan, J. and Gasteiger, J., Neural Networks in Chemistry and Drug Design, Wiley-VCH 1999, Weinheim, New York.

  9. Schneider, G., Neidhart, W., Giller, T. and Schmid, G., Angew. Chem. Int. Ed., 38 (1999) 2894.

    Google Scholar 

  10. Schneider, G., Chomienne-Clement, O., Hilfiger, L., Kirsch, S., Böhm, H.-J., Schneider, P. and Neidhart, W., Angew. Chemie Int. Ed., 39 (2000) 4130.

    Google Scholar 

  11. Schneider, P. and Schneider, G., QSAR Comb. Sci., 22 (2003) in press.

  12. Carhart, R.E., Smith, D.H. and Venkataraghavan, R., J. Chem. Inf. Comput. Sci., 25 (1985) 64.

    Google Scholar 

  13. MOE, Molecular Operating Environment. Distributor: Chemical Computing Group, 1010 Sherbrooke St. West, #910, Montreal, Canada H3A.

  14. Bush, B.L. and Sheridan, R.P., J. Chem. Inf. Comput. Sci., 33 (1993) 756.

    Google Scholar 

  15. CLIFF, CORINA, PETRA. Distributor: Molecular Networks GmbH, Computerchemie, Nägelsbachstrasse 25, D-91052 Erlangen, Germany, http://www.mol-net.de/.

  16. Gasteiger, J., Rudolph, C. and Sadowski, J., Tetrahedron Comp. Method., 3 (1990) 537.

    Google Scholar 

  17. Willett, P, Barnard, J.M. and Downs, G., J. Chem. Inf. Comput. Sci., 38 (1998) 983.

    Google Scholar 

  18. Xu, H. and Agrafiotis, D.K., Curr. Top. Med. Chem., 2 (2002) 1305.

    PubMed  Google Scholar 

  19. Corman, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to Algorithms, 2nd Edition, MIT Press, Cambridge, 2001.

    Google Scholar 

  20. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 37 (1997) 1.

    Google Scholar 

  21. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1996) 572.

    Google Scholar 

  22. Sadowski, J., J. Comput. Aided Mol. Des., 11 (1997) 53.

    PubMed  Google Scholar 

  23. Xu, H., Izrailev, S. and Agrafiotis, D., J. Chem. Inf. Comput. Sci., 43 (2003) 1186.

    PubMed  Google Scholar 

  24. Holliday, J.D., Salim, N., Whittle, M. and Willett, P., J. Chem. Inf. Comput. Sci., 43 (2003) 819.

    PubMed  Google Scholar 

  25. Chen, X. and Reynolds, C.H., J. Chem. Inf. Comput. Sci., 42 (2002) 1407.

    PubMed  Google Scholar 

  26. Schneider, G., Curr. Med. Chem., 9 (2002) 2095.

    PubMed  Google Scholar 

  27. Tropsha, A. and Zheng, W., Comb. Chem. High Throughput Screen., 5 (2002) 111.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fechner, U., Franke, L., Renner, S. et al. Comparison of correlation vector methods for ligand-based similarity searching. J Comput Aided Mol Des 17, 687–698 (2003). https://doi.org/10.1023/B:JCAM.0000017375.61558.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017375.61558.ad

Navigation