Skip to main content
Log in

Relative free energies of binding to thymidylate synthase of 2- and/or 4-thio and/or 5-fluoro analogues of dUMP

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Free energy perturbation calculations have been applied to evaluate the relative free energies of binding of 2′-deoxyuridine-5′-monophosphate (dUMP) and its 2- and/or 4-thio and/or 5-fluoro analogues to the wild-type E. coli thymidylate synthase (ecTS). The results accurately reproduce experimentally measured differences in the free energy of binding of dUMP versus 5-fluoro-dUMP to thymidylate synthase. They indicate that preferred binding of dUMP compared to 5-fluoro-dUMP in the binary complex is equally related to (i) more favorable electrostatic interactions of the dUMP molecule in the enzyme active site, and (ii) its less favorable solvation in the aqueous solution. The relative free energies of binding in the binary complex show moderate and qualitatively indistinguishable discrimination among the studied fluorinated and non-fluorinated 2- and/or 4-thio analogues of dUMP. The binding free energies of monothio analogues of dUMP and 5-fluoro-dUMP correspond quite well with experimentally measured activities of these nucleotides in the thymidylate synthase reaction. On the other hand, the binding free energies of both dithio analogues, 2,4-dithio-dUMP and 2,4-dithio-FdUMP, show lack of such correlation. The latter suggests that very low activities of the dithio analogues of dUMP and 5-fluoro-dUMP may relate more to the covalent reaction of these nucleotides within the ternary complex with TS and 5,10-methylenetetrahydrofolate, than to their pre-covalent binding. We speculate that a lack of substrate activity of 2,4-dithio-dUMP is related to the high aromaticity of its pyrimidine ring that prevents the Michael addition of the active site cysteine thiol to the pyrimidine C6 atom. A stronger affinity of the fluorinated analogues of dUMP to thymidylate synthase, compared to the non-fluorinated congeners, results from the fluorine substituent producing a local strain in the C6 region in the pyrimidine ring, thus sensitizing C6 to the Michael addition of the cysteine thiol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carreras, C.W. and Santi, D.V., Annu. Rev. Biochem., 64 (1995) 721.

    PubMed  Google Scholar 

  2. Stroud, R.M. and Finer-Moore, J.S., Biochemistry, 42 (2003) 239.

    PubMed  Google Scholar 

  3. Hartman, K.-R. and Heidelberger, C., J. Biol. Chem., 236 (1958) 3006.

    Google Scholar 

  4. Heidelberger, C., Prog. Nucl. Acid Res. Mol. Biol., 4 (1965) 1.

    Google Scholar 

  5. Smith, G.K., Amyx, H., Boytos, C.M., Duch, D.S., Ferone, R. and Wilson, H.R., Cancer Res., 55 (1995) 6117.

    PubMed  Google Scholar 

  6. Beale, P. and Clark, S. Tomudex. Clinical development. In: A.L. Jackman (Ed.), Anticancer Drug Development. Humana Press, Inc., Totowa, NJ, 1999. pp. 167-181.

    Google Scholar 

  7. Webber, S., Bartlett, C.A., Boritzki, T.J., Hillard, J.A., Howland, E.F., Johnston, A.L., Kosa, M., Margosiak, S.A., Morse, C.A. and Shetty, B.V., Cancer Chemother. Pharmacol., 37 (1996) 509.

    PubMed  Google Scholar 

  8. Shih, C. and Thornton, D.E. Preclinical pharmacology studies and the clinical development of a novel multitargeted antifolate, MTA (LY231514). In: A.L. Jackman (Ed.), Anticancer Drug Development. Humana Press, Inc. Totowa, NJ: 1999, pp. 183-201.

    Google Scholar 

  9. Lewis, C.A., Jr. and Dunlap, R.B. Topics in Molecular Pharmacology (Burgen, A.S.V. and Roberts, G.C.K., eds.), Elsevier/North-Holland Biomedical, New York, 1981, pp. 170-219.

    Google Scholar 

  10. Jackman, A.L., Jones, T.R. and Calvert, A.H., in: Muggia, F.M. (Ed.), Experimental and Clinical Progress in Cancer Chemotherapy, Martinus Nijhoff Publishers, Boston, MA, 1985, pp. 155-210.

    Google Scholar 

  11. Eckstein, J.W., Foster, P.G., Finer-Moore, J., Wataya, Y. and Santi, D.V., Biochemistry, 33 (1994) 15086.

    PubMed  Google Scholar 

  12. Rode, W., Zieliński, Z., Dzik, J.M., Kulikowski, T., Bretner, M., Kierdaszuk, B., Cieśla, J. and Shugar, D., Biochemistry, 29 (1990) 10835.

    PubMed  Google Scholar 

  13. Dzik, J.M., Bretner, M., Kulikowski, T., Golos, B., Jarmula, A., Poznański, J., Rode,W. and Shugar, D., Biochim. Biophys. Acta, 1293 (1996) 1.

    PubMed  Google Scholar 

  14. Dzik, J.M., Kulikowski, T., Zieliński, Z., Cieśla, J., Rode, W. and Shugar, D., Biochem. Biophys. Res. Commun., 149 (1987) 1200.

    PubMed  Google Scholar 

  15. Dzik, J.M., Zieliński, Z., Cieśla, J., Bretner, M., Kulikowski, T., Shugar, D., Bertino, J.R. and Rode, W., Biochem. Biophys. Res. Commun., 195 (1993) 1301.

    PubMed  Google Scholar 

  16. Kalman, T., Bloch, A., Szekeres, L. and Bardos, T.J., Biochem. Biophys. Res. Commun., 55 (1973) 210.

    PubMed  Google Scholar 

  17. Bretner, M., Kulikowski, T., Dzik, J.M., Balińska, M., Rode, W. and Shugar, D., J. Med. Chem. 36, (1993) 3611.

    PubMed  Google Scholar 

  18. Jarmula, A., Anulewicz, R., Leś, A., Cyrański, M.K., Adamowicz, L., Bretner, M., Felczak, K., Kulikowski, T., Krygowski, T.M. and Rode, W., Biochim. Biophys. Acta, 1382 (1998) 277.

    PubMed  Google Scholar 

  19. Beveridge, D.L. and Di Capua, F.M., Annu. Rev. Biophys. Biophys., 18 (1989) 431.

    Google Scholar 

  20. Kollman, P.A., Chem. Rev. 93 (1993) 2395.

    Google Scholar 

  21. Lamb, M.L. and Jorgensen, W.L., Curr. Opin. Chem. Biol., 1 (1997) 449.

    PubMed  Google Scholar 

  22. Stout, T.J., Sage, C.R. and Stroud, R.M., Structure, 6 (1998) 839.

    PubMed  Google Scholar 

  23. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A., AMBER 6, University of California, San Francisco, CA, 1999.

    Google Scholar 

  24. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Google Scholar 

  25. Bayly, C.I., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.

    Google Scholar 

  26. Cieplak, P., Bayly, C.I., Cornell, W.D. and Kollman, P.A., J. Comput. Chem., 16 (1995) 1357.

    Google Scholar 

  27. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  28. Åqvist, J., J. Phys. Chem., 94 (1990) 8021.

    Google Scholar 

  29. Smith, D.E. and Dang, L.X., J. Chem. Phys., 100 (1994) 3757.

    Google Scholar 

  30. Rastelli, G., Thomas, B., Kollman, P.A. and Santi, D.V., J. Am. Chem. Soc., 117 (1995) 7213.

    Google Scholar 

  31. Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F.van, DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  32. Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  33. van Gunsteren, W.F. and Berendsen, H.J.C., Angew. Chem., Int. Ed. Engl., 29 (1990) 992.

    Google Scholar 

  34. Åqvist, J., Medina, C. and Samuelsson, J.-E., Protein Eng., 7 (1994) 385.

    PubMed  Google Scholar 

  35. Åqvist, J., Luzhkov, V.B. and Brandsdal, B.O., Acc. Chem. Res., 35 (2002) 358.

    PubMed  Google Scholar 

  36. Finer-Moore, J., Fauman, E.B., Foster, P.G., Perry, K.M., Santi, D.V. and Stroud, R.M., J. Mol. Biol., 232 (1993) 1101.

    PubMed  Google Scholar 

  37. Weichsel, A., Montfort, W.R., Cieśla, J. and Maley, F., Proc. Natl. Acad. Sci. U.S.A., 92 (1995) 3493.

    PubMed  Google Scholar 

  38. Felder, T., Dunlap, R.B., Dix, D. and Spencer, T., Biochim. Biophys. Acta, 1597 (2002) 149.

    PubMed  Google Scholar 

  39. Santi, D.V., McHenry, C.S., Raines, R.T. and Ivanetich, K.M., Biochemistry, 26 (1987) 8606.

    PubMed  Google Scholar 

  40. Liu, L. and Santi, D.V., Proc. Natl. Acad. Sci. U.S.A., 90 (1993a) 8604.

    PubMed  Google Scholar 

  41. Liu, L. and Santi, D.V., Biochemistry, 32 (1993b) 9263.

    PubMed  Google Scholar 

  42. Morse, R.J., Kawase, S., Santi, D.V., Finer-Moore, J. and Stroud, R.M., Biochemistry, 39 (2000) 1011.

    PubMed  Google Scholar 

  43. Finer-Moore, J.S., Liu, L., Birdsall, D.L., Brem, R., Apfeld, J., Santi, D.V. and Stroud, R.M., J.Mol. Biol., 276 (1998) 113.

    PubMed  Google Scholar 

  44. Finer-Moore, J., Montfort, W.R. and Stroud, R.M., Biochemistry, 29 (1990) 6977.

    PubMed  Google Scholar 

  45. Matthews, D.A., Appelt, K., Oatley, S.J. and Xuong, N.H., J. Mol. Biol., 214 (1990a) 923.

    PubMed  Google Scholar 

  46. Montfort, W.R., Perry, K.M., Fauman, E.B., Finer-Moore, J.S., Maley, G.F., Hardy, L., Maley, F. and Stroud, R.M., Biochemistry, 29 (1990) 6964.

    PubMed  Google Scholar 

  47. Matthews, D.A., Villafranca, J.E., Janson, C.A., Smith, W.W., Welsh, K. and Freer, S., J. Mol. Biol., 214 (1990b) 937.

    PubMed  Google Scholar 

  48. Walsh, A.D., Discuss. Farad. Soc., 2 (1947) 18.

    Google Scholar 

  49. Bent, H.A., Chem. Rev., 61 (1961) 275.

    Google Scholar 

  50. Bent, H.A., J. Inorg. Nucl. Chem., 19 (1961) 43.

    Google Scholar 

  51. Jarmula, A., Cyrański, M.K., Leś, A., Krygowski, T.M. and Rode, W., Polish. J. Chem., 72 (1998) 1958.

    Google Scholar 

  52. Stout, T.J. and Stroud, R.M., Structure, 4 (1996) 67.

    PubMed  Google Scholar 

  53. Saenger, W. Principles of Nucleic Acid Structure. Springer-Verlag, New York, 1984.

    Google Scholar 

  54. Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graph., 14 (1996) 33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarmuła, A., Cieplak, P., Leś, A. et al. Relative free energies of binding to thymidylate synthase of 2- and/or 4-thio and/or 5-fluoro analogues of dUMP. J Comput Aided Mol Des 17, 699–710 (2003). https://doi.org/10.1023/B:JCAM.0000017377.07094.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017377.07094.2e

Navigation