Skip to main content
Log in

Molecular modelling studies on the ORL1-receptor and ORL1-agonists

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The ORL1 (opioid receptor like 1)- receptor is a member of the family of rhodopsin-like G protein-coupled receptors (GPCR) and represents an interesting new therapeutical target since it is involved in a variety of biomedical important processes, such as anxiety, nociception, feeding, and memory. In order to shed light on the molecular basis of the interactions of the GPCR with its ligands, the receptor protein and a dataset of specific agonists were examined using molecular modelling methods. For that purpose, the conformational space of a very potent non-peptide ORL1-receptor agonist (Ro 64-6198) with a small number of rotatable bonds was analysed in order to derive a pharmacophoric arrangement. The conformational analyses yielded a conformation that served as template for the superposition of a set of related analogues. Structural superposition was achieved by employing the program FlexS. Using the experimental binding data and the superposition of the ligands, a 3D-QSAR analysis applying the GRID/GOLPE method was carried out. After the ligand-based modelling approach, a 3D model of the ORL1-receptor has been constructed using homology modelling methods based on the crystal structure of bovine rhodopsin. A representative structure of the model taken from molecular dynamics simulations was used for a manual docking procedure. Asp-130 and Thr-305 within the ORL1-receptor model served as important hydrophilic interaction partners. Furthermore, a hydrophobic cavity was identified stabilizing the agonists within their binding site. The manual docking results were supported using FlexX, which identified the same protein-ligand interaction points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mollereau, C., Parmentier, M., Mailleux, P., Butour, J.-L., Moisand, C., Chalon, P., Caput, D., Vassart, G. and Meunier, J.-C., FEBS Lett., 341 (1994) 33.

    PubMed  Google Scholar 

  2. Ronzoni, S., Peretto, I. and Giardina, G., Exp. Opin. Ther. Patents, 11 (2001) 525.

    Google Scholar 

  3. Meunier, J.C., Eur. J. Pharmacol., 340 (1997) 1.

    PubMed  Google Scholar 

  4. Meunier, J.C., Exp. Opin. Ther. Patents, 10 (2000) 371.

    Google Scholar 

  5. Reinscheid, R.K., Nothacker, H.-P., Bourson, A., Ardati, A., Henningsen, R.A., Bunzow, J.R., Grandy, D.K., Langen, H., Monsma, F.J., Jr. and Civelli, O., Science, 270 (1995) 792.

    PubMed  Google Scholar 

  6. Jenck, F., Wichmann, J., Dautzenberg, F.M., Moreau, J.-L., Ouagazzal, A.M., Martin, J.R., Lundstrom, K., Cesura, A.M., Poli, S.M., Röver, S., Kolczewski, S., Adam, G. and Kilpatrick, G., Proc. Natl. Acad. Sci. USA, 97 (2000) 4938.

    PubMed  Google Scholar 

  7. Röver, S., Adam, G., Cesura, A.M., Galley, G., Jenck, F., Monsma, F.J., Jr., Wichmann, J. and Dautzenberg, F., J. Med. Chem., 43 (2000) 1329.

    PubMed  Google Scholar 

  8. Röver, S., Wichmann, J., Jenck, F., Adam, G. and Cesura, A.M., Bioorg. Med. Chem. Lett., 10 (2000) 831.

    PubMed  Google Scholar 

  9. Weiner, S. J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P.J., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  10. FlexS: Lemmen, C., Lengauer, T. and Klebe, G., J. Med. Chem., 41 (1998) 4502.

    PubMed  Google Scholar 

  11. Lemmen, C. and Lengauer, T., J. Comput.-Aided Mol. Des., 11 (1997) 357.

    PubMed  Google Scholar 

  12. GRID, Version 20, Molecular Discovery Ltd., Oxford, UK.

  13. GOLPE 4.5. Multivariate Infometric Analysis Srl., Perugia, Italy, 1999.

  14. Cruciani, G. and Watson, K.A., J. Med. Chem., 37 (1994) 2589.

    PubMed  Google Scholar 

  15. Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem., 40 (1997) 1455.

    PubMed  Google Scholar 

  16. Baroni, M., Constantino, G., Cruciani, G., Riganelli, D, Va-ligli, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.

    Google Scholar 

  17. Oprea, T.I. and Garcia, A.E., J. Comput.-Aided Mol. Des., 10 (1996) 186.

    PubMed  Google Scholar 

  18. Krystek, S.R., Hunt, J.T., Stein, P.D. and Stouch, T.R., J. Med. Chem., 38 (1995) 659.

    PubMed  Google Scholar 

  19. Höltje, H.-D., Sippl, W., Rognan, D. and Folkers, G., Molecu-lar Modeling: Basic Principles and Applications, 2nd edition, Wiley-VCH Verlagsgesellschaft, Weinheim, Germany, 2003.

    Google Scholar 

  20. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Mo-toshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and Miyano, M., Science, 289 (2000) 739.

    Google Scholar 

  21. Insight II 2000, Accelrys Inc., San Diego, CA.

  22. Rost, B., Casadio, R., Fariselli, P. and Sander, C., Protein Sci.,4 (1995) 521.

    PubMed  Google Scholar 

  23. Rost, B., Fariselli, P. and Casadio, R., Protein Sci., 5 (1996) 1704.

    PubMed  Google Scholar 

  24. Baldwin, J.M., Schertler, G.F.X. and Unger, V.M., J. Mol. Biol., 272 (1997) 144.

    PubMed  Google Scholar 

  25. SCWRL: Dunbrack, R.L. and Cohen, F.E., Protein Sci., 6 (1997) 1661.

    PubMed  Google Scholar 

  26. NMRCLUST: Kelley, L.A., Gardner, S.P. and Sutcliffe, M.J., Protein Eng., 9 (1996) 1063.

    PubMed  Google Scholar 

  27. PROCHECK: Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., J. Appl. Crystallogr., 26 (1993) 283.

    Google Scholar 

  28. FlexX: Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999) 228.

    PubMed  Google Scholar 

  29. Böhm, H.-J., J. Comput.-Aided Mol. Des., 6 (1992) 593.

    PubMed  Google Scholar 

  30. Böhm, H.-J., J. Comput.-Aided Mol. Des., 8 (1994) 243.

    PubMed  Google Scholar 

  31. Rarey, M., Kramer, B. and Lengauer, T., J. Comput.-Aided Mol. Des., 11 (1997) 369.

    PubMed  Google Scholar 

  32. Mouledous, L., Topham, C.M., Moisand, C., Mollereau, C.and Meunier, J.-C., Mol. Pharmacol., 57 (2000) 495.

    PubMed  Google Scholar 

  33. Thomsen, C. and Hohlweg, R., Br. J. Pharmacol., 131 (2000)

  34. Kolczewski, S., Adam, G., Cesura, A.M., Jenck, F., Hennig, M., Oberhauser, T., Poli, S.M., Rössler, F., Röver, S., Wich-mann, J. and Dautzenberg, F.M., J. Med. Chem., 46 (2003)

  35. Topham, C.M., Mouledous, M., Poda, G., Maigret, B. and Meunier, J.-C., Protein Eng., 11 (1998) 1163.

    PubMed  Google Scholar 

  36. Meunier, J.-C., Mouledous, L. and Topham, C.M., Peptides, 21 (2000) 893.

    PubMed  Google Scholar 

  37. Herzyk, P. and Hubbard, R.E., Biophys. J., 69 (1995) 2419.

    PubMed  Google Scholar 

  38. Hindle, S.A., Rarey, M., Buning, C. and Lengauer, T., J. Comput.-Aided Mol. Des., 16 (2002) 129.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bröer, B.M., Gurrath, M. & Höltje, HD. Molecular modelling studies on the ORL1-receptor and ORL1-agonists. J Comput Aided Mol Des 17, 739–754 (2003). https://doi.org/10.1023/B:JCAM.0000017491.97244.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017491.97244.69

Navigation