Skip to main content
Log in

Identifying the binding mode of a molecular scaffold

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We describe a method for docking of a scaffold-based series and present its advantages over docking of individual ligands, for determining the binding mode of a molecular scaffold in a binding site. The method has been applied to eight different scaffolds of protein kinase inhibitors (PKI). A single analog of each of these eight scaffolds was previously crystallized with different protein kinases. We have used FlexX to dock a set of molecules that share the same scaffold, rather than docking a single molecule. The main mode of binding is determined by the mode of binding of the largest cluster among the docked molecules that share a scaffold. Clustering is based on our `nearest single neighbor' method [J. Chem. Inf. Comput. Sci., 43 (2003) 208–217]. Additional criteria are applied in those cases in which more than one significant binding mode is found. Using the proposed method, most of the crystallographic binding modes of these scaffolds were reconstructed. Alternative modes, that have not been detected yet by experiments, could also be identified. The method was applied to predict the binding mode of an additional molecular scaffold that was not yet reported and the predicted binding mode has been found to be very similar to experimental results for a closely related scaffold. We suggest that this approach be used as a virtual screening tool for scaffold-based design processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thanki, N., Rao, J.K., Foundling, S.I., Howe, W.J., Moon, J.B., Hui, J.O., Tomasselli, A.G., Heinrikson, R.L., Thaisrivongs, S. and Wlodawer, A., Protein Sci., 1 (1992) 1061.

    PubMed  Google Scholar 

  2. Baldwin, E.T., Bhat, T.N., Gulnik, S., MV, M.V.H., Sowder, R.C., Cachau, R.E., Collins, J., Silva, A.M. and Erickson, J.W., Proc. Natl. Acad. Sci. USA, 90 (1993) 6796.

  3. Jordan, D.B., Basarab, G.S., Liao, D.I., Johnson, W.M., Winzenberg, K.N. and Winkler, D.A., J. Mol. Graph. Model., 19 (2001) 434.

    PubMed  Google Scholar 

  4. Sun, Y., Ewing, T.J., Skillman, A.G. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 12 (1998) 597.

    Google Scholar 

  5. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., Eur. J. Biochem., 80 (1977) 319.

    PubMed  Google Scholar 

  6. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    PubMed  Google Scholar 

  7. Halperin, I., Ma, B., Wolfson, H. and Nussinov, R., Proteins Struct. Funct. Genet., 47 (2002) 409.

    PubMed  Google Scholar 

  8. Abagyan, R. and Totrov, M., Curr. Opin. Chem. Biol., 5 (2001) 375.

    PubMed  Google Scholar 

  9. Doman, T.N., McGovern, S.L., Witherbee, B.J., Kasten, T.P., Kurumbail, R., Stallings, W.C., Connolly, D.T. and Shoichet, B.K., J. Med. Chem., 45 (2002) 2213.

    PubMed  Google Scholar 

  10. Hadjipavlou-Litina, D., Curr. Med. Chem., 7 (2000) 375.

    PubMed  Google Scholar 

  11. Tonder, J.E., Olesen, P.H., Hansen, J.B., Begtrup, M. and Pettersson, I., J. Comput.-Aided Mol. Design, 15 (2001) 247.

    Google Scholar 

  12. Sippl, W., Contreras, J.M., Parrot, I., Rival, Y.M. and Wermuth, C.G., J. Comput.-Aided Mol. Design, 15 (2001) 395.

    Google Scholar 

  13. Buolamwini, J.K., Curr. Opin. Chem. Biol., 3 (1999) 500.

    PubMed  Google Scholar 

  14. Traxler, P., Bold, G., Frei, J., Lang, M., Lydon, N., Mett, H., Buchdunger, E., Meyer, T., Mueller, M. and Furet, P., J. Med. Chem., 40 (1997) 3601.

    PubMed  Google Scholar 

  15. Biankley, C.J., Bennet, L.R., Fleming, R.W., Smith, R.D., Tessman, D.K. and Kaplan, H.R., J. Med. Chem., 26 (1983) 403.

    PubMed  Google Scholar 

  16. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    PubMed  Google Scholar 

  17. Chema, D. and Goldblum, A., J. Chem. Inf. Comput. Sci., 43 (2003) 208.

    PubMed  Google Scholar 

  18. SYBYL v. 6.7, Tripos Inc., St. Louis, MO.

  19. Mohammadi, M., MecMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B.K., Hubbard, S.R. and Schlessinger, J., Science, 276 (1997) 955.

    Google Scholar 

  20. Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova, A.V., Green, D., Schlessinger, J. and Hubbard, S.R., EMBO J., 17 (1998) 5896.

    PubMed  Google Scholar 

  21. Hamby, J.M., Connolly, C.J.C., Schroeder, M.C., Winters, R.T., Showalter, H.D.H., Panek, R.L., Major, T.C., Olsewski, B., Ryan, M.J., Dahling, T., Lu, G.H., Keiser, J., Amar, A., Shen, C., Kraker, A.J., Slintak, V., Nelson, J.M., Fry, D.W., Bradford, L., Hallak, H. and Doherty, A.M., J. Med. Chem., 40 (1997) 2296.

    PubMed  Google Scholar 

  22. Trumpp-Kallmeyer, S., Rubin, J.R., Humblet, C., Hamby, J.M. and Showalter, H.D.H., J. Med. Chem., 41 (1998) 1752.

    PubMed  Google Scholar 

  23. Sun, L., Tran, N., Liang, C., Hubbard, S., Tang, F., Lipson, K., Schreck, R., Zhou, Y., McMahon, G. and Tang, C., J.Med. Chem., 43 (2000) 2655.

    PubMed  Google Scholar 

  24. Schroeder, M.C., Hamby, J.M., Connolly, C.J., Grohar, P.J., Winters, R.T., Barvian, M.R., Moore, C.W., Boushelle, S.L., Crean, S.M., Kraker, A.J., Driscoll, D.L., Vincent, P.W., Elliott, W.L., Lu, G.H., Batley, B.L., Dahring, T.K., Major, T.C., Panek, R.L., Doherty, A.M. and Showalter, H.D., J. Med. Chem., 44 (2001) 1915.

    PubMed  Google Scholar 

  25. Thompson, A., Connolly, C., Hamby, J., Boushelle, S., Hartl, B., Amar, A., Kraker, A., Driscoll, D., Steinkampf, R., Patmore, S., Vincent, P., Roberts, B., Elliott, W., Klohs, W., Leopold, W., Showalter, H. and Denny, W., J. Med. Chem., 43 (2000) 4200.

    PubMed  Google Scholar 

  26. U.S. patents no. 6331555, 6358954.

  27. Waltenberger, J., Uecker, A., Kroll, J., Frank, H., Mayr, U., Bjorge, J.D., Fujita, D., Gazit, A., Hombach, V., Levitzki, A. and Bohmer, F.D., Circ. Res., 85 (1999) 12.

    Google Scholar 

  28. U.S. patents no. 6221873, 6303618.

  29. U.S. patents no. 6218549, 6211361.

  30. Arris, C.E., Boyle, F.T., Calvert, A.H., Curtin, N.J., Endicott, J.A., Garman, E.F., Gibson, A.E., Golding, B.T., Grant, S., Griffin, R.J., Jewsbury, P., Johnson, L.N., Lawrie, A.M., Newell, D.R., Noble, M.E., Sausville, E.A., Schultz, R. and Yu, W., J. Med. Chem., 43 (2000) 2797.

    PubMed  Google Scholar 

  31. Meijer, L., Thunnissen, A.M., White, A.W., Garnier, M., Nikolic, M., Tsai, L.H., Walter, J., Cleverley, K.E., Salinas, P.C., Wu, Y.Z., Biernat, J., Mandelkow, E.M., Kim, S.H. and Pettit, G.R., Chem. Biol., 7 (2000) 51.

    PubMed  Google Scholar 

  32. Clark, R.D., Strizhev, A., Leonard, J.M., Blake, J.F. and Matthew, J.B., J. Mol. Graph. Model., 20 (2002) 281.

    PubMed  Google Scholar 

  33. Paul, N. and Rognan, D., Proteins Struct. Funct. Genet., 47 (2002) 521.

    PubMed  Google Scholar 

  34. Knegtel, R.M. and Wagener, M., Proteins Struct. Funct. Genet., 37 (1999) 334.

    PubMed  Google Scholar 

  35. Broughton, H.B., J. Mol. Graph. Model., 18 (2000) 247.

    PubMed  Google Scholar 

  36. Fradera, X., Knegtel, R.M. and Mestres, J., Proteins Struct. Funct. Genet., 40 (2000) 623.

    PubMed  Google Scholar 

  37. Su, A.I., Lorber, D.M., Weston, G.S., Baase, W.A., Matthews, B.W. and Shoichet, B.K., Proteins Struct. Funct. Genet., 42 (2001) 279.

    PubMed  Google Scholar 

  38. Kua, J., Zhang, Y.K. and McCammon, J.A., J. Am. Chem. Soc., 124 (2002) 8260.

    PubMed  Google Scholar 

  39. Wang, R.X., Lu, Y.P. and Wang, S.M., J. Med. Chem., 46 (2003) 2287.

    PubMed  Google Scholar 

  40. Shoichet, B.K., McGovern, S.L., Wei, B. and Irwin, J.J., Curr. Opin. Chem. Biol., 6 (2002) 439.

    PubMed  Google Scholar 

  41. Hetenyi, C. and Spoel, D.V.D., Protein Sci., 11 (2002) 1729.

    PubMed  Google Scholar 

  42. Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem., 42 (1999) 5100.

    PubMed  Google Scholar 

  43. Bissantz, C., Folkers, G. and Rognan, D., J. Med. Chem., 43 (2000) 4759.

    PubMed  Google Scholar 

  44. Wang, R., Lai, L. and Wang, S., J. Comput.-Aided Mol. Design, 16 (2002) 11.

    Google Scholar 

  45. Knegtel, R.M., Kuntz, I.D. and Oshiro, C.M., J. Mol. Biol., 266 (1997) 424.

    PubMed  Google Scholar 

  46. Sudbeck, E.A., Mao, C., Vig, R., Venkatachalam, T.K., Tuel-Ahlgren, L., and Uckun, F.M., Antimicrob. Agents Chemother., 42 (1998) 3225.

    PubMed  Google Scholar 

  47. Engh, R.A. and }Bossemeyer, D., Pharmacol. Ther., 93 (2002) 99.

    PubMed  Google Scholar 

  48. Lin, J.H., Perryman, A.L., Schames, J.R. and McCammon, A., J. Am. Chem. Soc., 124 (2002) 5632.

    PubMed  Google Scholar 

  49. Sun, L., Tran, N., Liang, C., Tang, F., Rice, A., Schreck, R., Waltz, K., Shawver, L.K., McMahon, G. and Tang, C., J.Med. Chem., 42 (1999) 5120.

    PubMed  Google Scholar 

  50. Boschelli, D., Wu, Z., Klutchko, S., Showalter, H., Hamby, J., Lu, G., Major, T., Dahring, T., Batley, B., Panek, R., Keiser, J., Hartl, B., Kraker, A., Klohs, W., Roberts, B., Patmore, S., Elliott, W., Steinkampf, R., Bradford, L., Hallak, H. and Doherty, A., J. Med. Chem., 41 (1998) 4365.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiram Goldblum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chema, D., Eren, D., Yayon, A. et al. Identifying the binding mode of a molecular scaffold. J Comput Aided Mol Des 18, 23–40 (2004). https://doi.org/10.1023/B:JCAM.0000022561.76694.5b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000022561.76694.5b

Navigation