Skip to main content
Log in

Comparison of a 3D-model of the classical α-scorpion toxin V from Leiurus quinquestriatus quinquestriatus with other scorpion toxins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the present paper, a study of classical and insect α-scorpion toxins is described. A homology model of the classical α-toxin LqqV from Leiurus quinquestriatus quinquestriatus was developed. The model was compared to stable and energetically favourable conformations of AaHII from Androctonus australis Hector and LqhαIT from Leiurus quinquestriatus hebraeus, which are the most active α-toxins in mammals and insects. The conformations were retrieved from molecular dynamics simulations of known structures. The model of LqqV shows a C-terminal conformation similar to LqhαIT. This is mainly caused by electrostatic interactions between Lys10/Lys60 and Glu59, which are comparable to the cation-π interactions of Tyr10 and Arg64 in LqhαIT. During the simulations the structures of AaHII and LqqV were stabilised through electrostatic interactions between Glu32 and Lys50 and especially the loop adjacent to the α-helix is affected, which is in contrast to LqhαIT. When the molecular electrostatic potentials of the toxins were studied, a possibly important difference between the classical α-toxins and the insect α-toxin LqhαIT was found in the area around Lys30 and Arg56 of AaHII, where a positive potential is missing in LqhαIT. A large negative potential caused by Asp3, Glu15 and Asp19 in LqhαIT is also unique for this toxin. It is proposed that Arg18, which is important for activity of LqhαIT, restricts the negative potential in this area and is not essential for toxins where negatively charged residues in comparable positions are not present.

Abbreviations: AaHI-III, α-toxins I, II, III from Androctonus australis Hector; LqqV, α-toxin V from Leiurus quinquestriatus quinquestriatus; LqhαIT, insect α-toxin from Leiurus quinquestriatus hebraeus; BotIII from Buthus occitanus tunetanus; BomIII fromButhus occitanus mardochei; LqhII and LqhIII from Leiurus quinquestriatus hebraeus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Possani, L.D., Becerril, B., Delepierre, M. and Tytgat, J., Eur. J. Biochem., 264 (1999) 287.

    Article  PubMed  Google Scholar 

  2. Gordon, D., Savarin, P., Gurevitz, M. and Zinn-justin, S., Toxicol. Toxin. Rev., 17 (1998) 131.

    Google Scholar 

  3. Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T. and Catterall, W.A., J. Biol. Chem., 271 (1996) 15950.

    Article  PubMed  Google Scholar 

  4. Cestele, S., Qu, Y., Rogers, J.C., Rochat, H., Scheuer, T. and Catterall, W.A., Neuron, 21 (1998) 919.

    Article  PubMed  Google Scholar 

  5. Gordon, D., Martin-eauclaire, M.F., Cestele, S., Kopeyan, C., Carlier, E., Khalifa, R.B., Pelhate, M. and Rochat, H., J. Biol. Chem., 271 (1996) 8034.

    Article  PubMed  Google Scholar 

  6. Sautiere, P., Cestele, S., Kopeyan, C., Martinage, A., Drobecq, H., Doljansky, Y. and Gordon, D., Toxicon, 36 (1998) 1141.

    Article  PubMed  Google Scholar 

  7. Kharrat, R., Darbon, H., Rochat, H. and Granier, C., Eur. J. Biochem., 181 (1989) 381.

    Article  PubMed  Google Scholar 

  8. Kharrat, R., Darbon, H., Granier, C. and Rochat, H., Toxicon, 28 (1990) 509.

    Article  PubMed  Google Scholar 

  9. Darbon, H., Jover, E., Couraud, F. and Rochat, H., Int. J. Pept. Protein Res., 22 (1983) 179.

    PubMed  Google Scholar 

  10. El Ayeb, M., Darbon, H., Bahraoui, E.M., Vargas, O. and Rochat, H., Eur. J. Biochem., 155 (1986) 289.

    Article  PubMed  Google Scholar 

  11. Zilberberg, N., Froy, O., Loret, E., Cestèle, S., Arad, D., Gordon, D. and Gurevitz, M., J. Biol. Chem., 272 (1997) 4810.

    Article  Google Scholar 

  12. Gilles, N., Krimm, I., Bouet, F., Froy, O., Gurevitz, M., Lancelin, J.M. and Gordon, D., J. Neurochem., 75 (2000) 1735.

    Article  PubMed  Google Scholar 

  13. Clackson, T. and Wells, J.A., Science, 267 (1995) 383.

    PubMed  Google Scholar 

  14. Bogan, A.A. and Thorn, K.S., J. Mol. Biol., 280 (1998) 1.

    Article  PubMed  Google Scholar 

  15. Cunningham, B.C. and Wells, J.A., J. Mol. Biol., 234 (1993) 554.

    Article  PubMed  Google Scholar 

  16. Sheinerman, F.B., Norel, R. and Honig, B., Curr. Opin. Struct. Biol., 10 (2000) 153.

    Article  PubMed  Google Scholar 

  17. Bermann, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235. (http://www.rcsb.org/pdb/)

    Article  PubMed  Google Scholar 

  18. Smith, G.D., Blessing, R.H., Ealick, S.E., Fontecilla-camps, J.C., Hauptman, H.A., Housset, D. and Langs, D.A., Acta Crystallogr., D53 (1997) 551.

    Google Scholar 

  19. Tugarinov, V., Kustanovich, I., Zilberberg, N., Gurevitz, M. and Anglister, J., Biochemistry, 36 (1997) 2414.

    Article  PubMed  Google Scholar 

  20. Menez, A., Toxicon, 36 (1998) 1557.

    Article  PubMed  Google Scholar 

  21. Philippopoulos, M. and Lim, C., Proteins, 36 (1999) 87.

    Article  PubMed  Google Scholar 

  22. Catterall, W.A., Neuron, 26 (2000) 13.

    Article  Google Scholar 

  23. Bezanilla, F., Physiol. Rev., 80 (2000) 555.

    PubMed  Google Scholar 

  24. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B.T. and Mackinnon, R., Nature, 423 (2003) 33.

    Article  PubMed  Google Scholar 

  25. Jiang, Y., Ruta, V., Chen, J., Lee, A. and Mackinnon, R., Nature, 423 (2003) 42.

    Article  PubMed  Google Scholar 

  26. Schweitz, H., Vincent, J.P., Barhanin, J., Frelin, C., Linden, G., Hugues, M. and Lazdunski, M., Biochemistry, 20 (1981) 5245.

    Article  PubMed  Google Scholar 

  27. Khera, P.K., Benzinger, G.R., Lipkind, G., Drum, C.L., Hanck, D.A. and Blumenthal, K.M., Biochemistry, 34 (1995) 8533.

    Article  PubMed  Google Scholar 

  28. Li, H.M., Wang, D.C., Zeng, Z.H., Jin, J. and Hu, R.Q., J. Mol. Biol., 261 (1996) 415.

    Article  PubMed  Google Scholar 

  29. Housset, D., Habersetzer-rochat, C., Astier, J.P. and Fontecilla-camps, J.C., J. Mol. Biol., 238 (1994) 88.

    Article  PubMed  Google Scholar 

  30. INSIGHTII/DISCOVER/HOMOLOGY/DELPHI, Biosym Technologies, Inc./Molecular Simulations (MSI), San Diego, CA (Version 98.0 and 2000).

  31. Laskowski, R.A., Macarthur, M.W., Moss, D.S. and Thornton, J.M., J. Appl. Crystallogr., 26 (1993) 283.

    Article  Google Scholar 

  32. Kelley, L.A., Gardner, S.P. and Sutcliffe, M.J., Protein Eng., 10 (1997) 737.

    Article  PubMed  Google Scholar 

  33. Kelley, L.A., Gardner, S.P. and Sutcliffe, M.J., Protein Eng., 9 (1996) 1063.

    PubMed  Google Scholar 

  34. Thompson, J.D., Higgins, D.G. and Gibson, T.J., Nucleic Acids Res., 22 (1994) 4673. (http://www2.ebi.ac.uk/clustalw)

    PubMed  Google Scholar 

  35. Bairoch, A. and Boeckmann, B., Nucleic Acids Res., 19 Suppl (1991) 2247. (http://www.expasy.ch/sprot/sptot-top.html)

    PubMed  Google Scholar 

  36. Landon, C., Cornet, B., Bonmatin, J.M., Kopeyan, C., Rochat, H., Vovelle, F. and Ptak, M., Eur. J. Biochem., 236 (1996) 395.

    Article  PubMed  Google Scholar 

  37. Krimm, I., Gilles, N., Sautiere, P., Stankiewicz, M., Pelhate, M., Gordon, D. and Lancelin, J.M., J. Mol. Biol., 285 (1999) 1749.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendels, S., Höltje, HD. Comparison of a 3D-model of the classical α-scorpion toxin V from Leiurus quinquestriatus quinquestriatus with other scorpion toxins. J Comput Aided Mol Des 18, 119–133 (2004). https://doi.org/10.1023/B:jcam.0000030035.00229.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:jcam.0000030035.00229.eb

Navigation