Skip to main content
Log in

Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds.

Abbreviations: ADME – absorption, distribution, metabolism and excretion; CYP – cytochrome P450; MIFs – molecular interaction fields; HTS – high throughput screening; DDI – drug-drug interactions; 3D – three-dimensional; PCA – principal components analysis; CPCA – consensus principal components analysis; PLS – partial least squares; PLSD – partial least squares discriminant; GRIND – grid independent descriptors; GRID – software originally created and developed by Professor Peter Goodford.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, D.E. and Pickett, S.D., Drug Discov. Today, 5 (2000) 49.

    Google Scholar 

  2. van de Waterbeemd, H., Smith, D.A., Beaumont, K. and Walker, D.K., J. Med. Chem., 44 (2001) 1313.

    PubMed  Google Scholar 

  3. van de Waterbeemd, H., Curr. Opin. Drug Discov. Dev., 5 (2002) 33.

    Google Scholar 

  4. van de Waterbeemd, H. and Gifford, E., Nat. Rev. Drug Discov., 2 (2003)192.

    PubMed  Google Scholar 

  5. Boobis, A., Gundert-Remy, U., Kremers, P., Macheras, P. and Pelkonen, O., Eur. J. Pharm. Sci., 17 (2002) 183.

    PubMed  Google Scholar 

  6. Guengerich, F.P., Chem. Res. Toxicol., 14 (2001) 611.

    PubMed  Google Scholar 

  7. Testa, B., In Wolff, M. (Ed) Drug Metabolism, in Burger's Medicinal Chemistry and Drug Discovery. Principles and Practice, Vol. 1. John Wiley & Son, New York, 1994, pp. 129–180.

    Google Scholar 

  8. Bertrand, M., Jackson, P. and Walther, P., Eur. J. Pharm. Sci. 11 (2 Suppl) (2000) S61.

    Google Scholar 

  9. Lewis, D.F.V., Xenobiotica, 28 (1998) 617.

    PubMed  Google Scholar 

  10. Wrighton, S.A., Schuetz, E.G., Thummel, K.E., Shen, D.D., Korzekwa, K.R. and Watkins, P.B., Drug Metab. Rev., 32 (2000) 339.

    PubMed  Google Scholar 

  11. Thummel, K.E. and Shen, D.D., In Hardman, J.G., Limbird, L.E., Molinoff, P.B. and Gilman, A.G. (Eds), Appendix II. Design and Optimization of Dosage Regimens: Pharmacokinetic Data. In Goodman and Gilman's. The Pharmacological Basis of Therapeutics, 10th Edition, McGraw-Hill, New York, 2001, pp. 1917–2023.

    Google Scholar 

  12. Cruciani, G., Crivori, P., Carrupt, P-A. and Testa, B., Theochem,503 (2000) 17.

    Google Scholar 

  13. Pastor, M., Cruciani, G., McLay, I., Pickett, S. and Clementi, S., J. Med. Chem., 43(2000)3233.

    PubMed  Google Scholar 

  14. Singh, S.B., Shen, L.Q., Walker, M.J. and Sheridan, R.P., J. Med. Chem., 46 (2003) 1330.

    PubMed  Google Scholar 

  15. Zamora, I., Afzelius, L. and Cruciani, G., J. Med. Chem., 46 (2003) 2313.

    PubMed  Google Scholar 

  16. CORINA. Molecular Networks, GmbH, Computerchemie, Erlangen, Germany, 1998.

  17. VolSurf v.3.0, Molecular Discovery Ltd., Oxford, UK, 2002.

  18. Almond v.3.0, Multivariate Infometric Analysis S.r.l., Perugia, Italy, 2002.

  19. Wold, S., Esbensen, K. and Geladi, P., Chemom. Intell. Lab. Syst., 2 (1987) 37.

    Google Scholar 

  20. Kastenholz, M.A., Pastor, M., Cruciani, G., Haaksma, E.E.J. and Fox, T., J. Med. Chem., 43 (2000) 3033.

    PubMed  Google Scholar 

  21. Dunn, W.J. and Wold, S., Pattern Recognition Techniques in drug design. In Hansch, C., Sammes, P.G. and Taylor, J.B. (Eds), Comprehensive Medicinal Chemistry, Vol. 4, Pergamon Press, Oxford, UK, 1990, pp. 691–714.

    Google Scholar 

  22. GOLPE 4.5, Multivariate Infometric Analysis S.r.l., Perugia, Italy, 2002.

  23. GRID v. 20, Molecular Discovery Ltd., Oxford, UK, 2002.

  24. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    PubMed  Google Scholar 

  25. Wold, S., Technometrics, 20 (1979) 379.

    Google Scholar 

  26. Wold, S., Albano, C., Dunn, W. J. III, Edlund, U., Esbensen, K., Geladi, P., Helberg, S., Johansson, E., Lindberg, W. and Sjostrom, M., Multivariate data analysis in chemistry. In Kowalsky, B.R. (Ed), Chemometrics Mathematics and Statistics in Chemistry. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983, pp. 17–96.

    Google Scholar 

  27. Cruciani, G., Pastor, M. and Guba, W., Eur. J. Pharm. Sci., 11(Suppl. 2) (2000) S29.

    Google Scholar 

  28. Crivori, P., Cruciani, G., Carrupt, P.-A. and Testa, B., J. Med. Chem., 43 (2000) 2204.

    PubMed  Google Scholar 

  29. Alifrangis, L.H., Christensen, I.T., Berglund, A., Sandberg, M., Hovgaard, L. and Frokjaer, S., J. Med. Chem., 43 (2000) 103.

    PubMed  Google Scholar 

  30. Ajay, W., Walters, P. and Murck, M.A., J. Med. Chem., 41 (1998) 3314.

    PubMed  Google Scholar 

  31. Sadowski, J. and Kubinyi, H., J. Med. Chem., 41 (1998) 3325.

    PubMed  Google Scholar 

  32. Guengerich, F.P., Annu. Rev. Pharmaco. Toxicol., 39 (1999)1.

    Google Scholar 

  33. Lewis, D.F.V., Eddershaw, P.J., Goldfarb, P.S. and Tarbit, M.H., Xenobiotica, 26 (1996) 1067.

    PubMed  Google Scholar 

  34. Smith, D.A., Jones, B.C. and Walker, D., Med. Res. Rev., 16(3) (1996) 243.

    PubMed  Google Scholar 

  35. Smith, D.A., Ackland, M.J. and Jones, B.C., Drug Discov. Today, 2(10) (1997) 406.

    Google Scholar 

  36. Smith, D.A., Ackland, M.J. and Jones, B.C., Drug Discov. Today, 2(11) (1997) 479.

    Google Scholar 

  37. Shen, M., Xiao, Y., Golbraikh, A., Gombar, V.K. and Tropsha, A., J. Med. Chem.,46 (2003) 3013.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Crivori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crivori, P., Zamora, I., Speed, B. et al. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates. J Comput Aided Mol Des 18, 155–166 (2004). https://doi.org/10.1023/B:JCAM.0000035184.11906.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000035184.11906.c2

Navigation