Skip to main content
Log in

Separation of Spatio-Temporal Receptive Fields into Sums of Gaussian Components

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Visual cortical simple cells have been experimentally shown to reveal non-trivial spatio-temporal orientation tuning functions comprising different phases of specifically tuned enhanced and suppressed activity. A recently developed analytical method based on nonlinear neural field models suggests that such space-time responses should be approximately separable into a sum of temporally amplitude modulated Gaussian spatial components. In the present work, we investigate this possibility by means of numerical fits of sums of Gaussians to response functions observed in experiments and computer simulations. Because the theory relates each single component to a particular connectivity kernel between the underlying cell classes shaping the response, the relative contribution of feedforward and cortex-intrinsical excitatory and inhibitory feedback mechanisms to single cell tuning can be approached and quantified in experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adorján P, Levitt J, Lund J, Obermayer K (1999) A model for the intracortical origin of orientation preference and tuning in Macaque striate cortex'. Visual Neurosci. 16: 303-318.

    Google Scholar 

  • Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92: 3844-3848.

    Google Scholar 

  • Carandini M, Ringach DL (1997) Predictions of a recurrent model of orientation selectivity. Vision Res. 37: 3061-3071.

    Google Scholar 

  • Ermentrout GB, Cowan JD (1979) Mathematical theory of visual hallucination patterns. Biol. Cybern. 34: 137-150.

    Google Scholar 

  • Ferster D, Koch C (1987) Neuronal connections underlying orientation selectivity in cat visual cortex. Trends Neurosci. 10: 487-492.

    Google Scholar 

  • Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23: 441-471.

    Google Scholar 

  • Gillespie C, Lampl I, Anderson JS, Ferster D (2001) Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex. Nature Neurosci. 4: 1014-1019.

    Google Scholar 

  • Heeger D (1992) Half-squaring in responses of cat simple cells. Vis. Neurosci. 9: 427-443.

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol. Lond. 160: 106-154.

    Google Scholar 

  • Miller KD, Troyer TW (2002) Neural noise can explain expansive power-law nonlinearities in neural response functions. J. Neurophysiol. 87: 653-659.

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Pugh MC, Ringach DL, Shapley R, Shelley MJ (2000) Computational modeling of orientation tuning dynamics in monkey primary visual cortex. J. Comput. Neurosci. 8: 143-159.

    Google Scholar 

  • Reid RC, Alonso JM (1996) The processing and encoding of information in the visual cortex. Current Opinion in Neurobiology 6: 465-480.

    Google Scholar 

  • Ringach DL, Hawken ML, Shapley R (1997) The dynamics of orientation tuning in macaque V1. Nature 387: 281-284.

    Google Scholar 

  • Samsonovic A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17: 5900-5920.

    Google Scholar 

  • Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortex simple cells. J. Neurosci. 15: 5448-5465.

    Google Scholar 

  • Sompolinsky H, Shapley R (1997) New perspectives on the mechanism for orientation selectivity. Curr. Opin. Neurobiol. 7: 514-522.

    Google Scholar 

  • Suder K, Wörgötter F, Wennekers T (2001) Neural field model of receptive field restructuring in primary visual cortex. Neural Comp. 13: 139-159.

    Google Scholar 

  • Suder K, Funke K, Zhao Y, Kerscher N, Wennekers T, Wörgötter F (2002) Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamo-cortical feed-forward activity-Experiments and models. Exp. Brain Res. 144: 430-444.

    Google Scholar 

  • Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18: 5908-5927.

    Google Scholar 

  • Wennekers T (2001) Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models. Neural Comp. 13: 1721-1747.

    Google Scholar 

  • Wennekers T (2002) Dynamic approximation of spatio-temporal receptive fields in nonlinear neural field models. Neural Comp. 14: 1801-1825.

    Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55-80.

    Google Scholar 

  • Wörgötter F, Suder K, Zhao Y, Kerscher N, Eysel UT, Funke K (1998) State-dependent receptive-field restructuring in the visual cortex. Nature 396: 165-167.

    Google Scholar 

  • Zhang K-C (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. J. Neurosci. 16: 2112-2126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wennekers, T. Separation of Spatio-Temporal Receptive Fields into Sums of Gaussian Components. J Comput Neurosci 16, 27–38 (2004). https://doi.org/10.1023/B:JCNS.0000004839.49178.2d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000004839.49178.2d

Navigation