Skip to main content
Log in

Extracting Wave Structure from Biological Data with Application to Responses in Turtle Visual Cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Waves have long been thought to be a fundamental mechanism for communicating information within a medium and are widely observed in biological systems. However, a quantitative analysis of biological waves is confounded by the variability and complexity of the response. This paper proposes a robust technique for extracting wave structure from experimental data by calculating “wave subspaces” from the KL decomposition of the data set. If a wave subspace contains a substantial portion of the data set energy during a particular time interval, one can deduce the structure of the wave and potentially isolate its information content. This paper uses the wave subspace technique to extract and compare wave structure in data from three different preparations of the turtle visual cortex. The paper demonstrates that wave subspace caricatures from the three cortical preparations have qualitative similarities. In the numerical model, where information about the underlying dynamics is available, wave subspace landmarks are related to activation and changes in behavior of other dynamic variables besides membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bringuier V, Chavane F, Glaeser L, Fegnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695-699.

    Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325-340.

    Google Scholar 

  • Colombe JB, Ulinski PS (1999) Temporal dispersion windows in cortical neurons. J. Comp. Neurosci. 7: 71-87.

    Google Scholar 

  • Connors BW, Kriegstein AR (1986) Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons. J. Neurosci 6: 164-177.

    Google Scholar 

  • Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J. Neurosci. 21: 9403-9413.

    Google Scholar 

  • Cosans CE, Ulinski PS (1990) Spatial organization of axons in turtle visual cortex: Intralamellar and interlamellar projections. J. Comp. Neurol. 296: 548-558.

    Google Scholar 

  • Du X, Ghosh B, Ulinski PS (in press) Encoding and decoding with spatio-temporal waves in the turtle visual cortex: Effect of temporal sampling and noise. IEEE Trans. Biomed. Eng.

  • Ermentrout GB (1998) The analysis of synaptically generated traveling waves. J. Comp. Neurosci. 5: 191-208.

    Google Scholar 

  • Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computation role. Neuron 29: 33-44.

    Google Scholar 

  • Ghanzafar AA, Nicoleilis MAL (1999) Spatiotemporal properties of layer V neurons of the rate primary somatosensory cortex. Cerebral Cortex 9: 348-361.

    Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hidesheim R (1994) Cortical point spread function and long range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14: 2545-2568.

    Google Scholar 

  • Kirby M (2001) Geometric Data Analysis. John Wiley & Sons.

  • Kriegstein AR (1987) Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system. J Neurosci. 7: 2488-2492.

    Google Scholar 

  • Mazurskaya PS (1974) Organization of receptive fields in the forebrain of Emys orbiculari. Neurosci. Behav. Physiol. 7: 311-318.

    Google Scholar 

  • Medvedev GS, Kopell N (2001) Synchronization and transient dynamics in chains of electrically coupled FitzHugh-Nagumo oscillations. SIAM J. Appl. Math 61(5): 1763-1801.

    Google Scholar 

  • Mulligan KA, Ulinski PS (1990) Organization of geniculocortical projections in turtles: Isoazimuth lamellae in the visual cortex. J. Comp. Neurol. 296: 531-547.

    Google Scholar 

  • Nenadic Z, Ghosh BK, Ulinski PS (2000) Spatiotemporal dynamics in a model of turtle visual cortex. Neurocomp. 32/33: 479-486.

    Google Scholar 

  • Nenadic Z, Ghosh B, Ulinski PS (2002) Modeling and estimation problems in the turtle visual cortex. IEEE Trans Biomed. Eng. 49: 753-762.

    Google Scholar 

  • Nenadic Z, Ghosh B, Ulinski PS (2003) Propagating waves in visual cortex: A large-scale model of turtle visual cortex. J. of Computational Neuroscience 14: 161-184.

    Google Scholar 

  • Osan R, Ermentrout GB (2002) The evolution of synaptically generated waves in one-and two-dimensional domains. Physica D 163(3/4): 217-235.

    Google Scholar 

  • Peterson CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivoby voltage-sensitive dye images combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23(3): 1298-1309.

    Google Scholar 

  • Prechtl J (1994) Visual motion induces synchronous oscillations in turtle visual cortex. PNAS 91: 12467-12471.

    Google Scholar 

  • Prechtl J, Bullock T, Kleinfeld D (2000) Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex. PNAS 97: 877-882.

    Google Scholar 

  • Prechtl J, Cohen L, Pesaran B, Mitra P, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. PNAS 94: 7621-7626.

    Google Scholar 

  • Robbins KA, Senseman DM (1998) Visualizing differences in movies of cortical activity. IEEE Visualization '98, 217-224.

    Google Scholar 

  • Robbins KA, Senseman DM (2003) Using derivatives to compare cortical waves across preparations. Neurocomp. 52/54: 885-891.

    Google Scholar 

  • Seidemann E, Arieli A, Grinvald A, Slovin H (2002) Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 285: 862-865.

    Google Scholar 

  • Senseman DM (1996) Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes. Vis. Neurosci 13: 963-977.

    Google Scholar 

  • Senseman DM (1999) Spatiotemporal structure of depolarization spread in cortical pyramidal cell populations evoked by diffuse retinal light flashes. Vis. Neurosci. 16: 65-79.

    Google Scholar 

  • Senseman DM, Robbins KA (1999) Modal behavior of cortical neural networks during visual processing. J. Neurosci. 19(RC3): 1-7.

    Google Scholar 

  • Senseman DM, Robbins KA (2002) High-speed VSD imaging of visually evoked cortical waves: Decomposition into intra-and intercortical wave motion. J. Neurophys. 87(3): 1499-1514.

    Google Scholar 

  • Sirovich L, Everson R (1992) Management and analysis of large scientific datasets. Intl. J. of Supercomp. Appl. 6(1): 50-68.

    Google Scholar 

  • Ulinski PS (1999) Neural mechanisms underlying the analysis of moving visual stimuli. In: PS Ulinski, EG Jones, A Peters, eds. Cerebral Cortex., vol. 13 Models of Cortical Circuitry. Plenum Press, New York, pp. 283-399.

    Google Scholar 

  • Ulinksi PS, Nautiyal J (1986) Organization of the retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys. J. Comp. Neurol. 276: 92-112.

    Google Scholar 

  • Whitham GB (1974) Linear and Nonlinear Waves. Wiley Interscience.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, K.A., Senseman, D.M. Extracting Wave Structure from Biological Data with Application to Responses in Turtle Visual Cortex. J Comput Neurosci 16, 267–298 (2004). https://doi.org/10.1023/B:JCNS.0000025689.01581.26

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000025689.01581.26

Navigation