Skip to main content
Log in

Tristate Markov Model for the Firing Statistics of Rapidly-Adapting Mechanoreceptive Fibers

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Rapidly-adapting (RA) mechanoreceptive fibers, which are associated with Meissner corpuscles, mediate one component of the neural information that contributes to the sense of touch. Responses of cat RA fibers subject to 40-Hz sinusoidal stimulation were modeled as a Markov process. Since an RA fiber generates one, two or no spikes in each cycle of the stimulus, the fiber's activity was considered to exist in one of these three possible states. By analyzing empirically generated spike trains, the probability of each state and the probabilities of transitions between the three states were found as a function of the average firing rate of the fiber. The average firing rate depends on the stimulus amplitude. In addition, the phase of each spike with respect to the stimulus cycle was represented by a Laplace distribution. Based on empirical data, the mean and the standard deviation of this distribution decrease as the stimulus amplitude is increased. The entire stochastic model was implemented on a computer to simulate the responses of RA fibers. The post-stimulus time, inter-spike interval and period histograms generated from the simulations match the histograms obtained from the empirical data well as quantified by relative errors. This temporal model can be combined with a population model for average rate to derive a spatio-temporal description of the responses of somatosensory afferents. The effects of changing the stimulation frequency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of sine-wave stimulus: Frequency and intensity effects. J. Acoust. Soc. Am. 49: 1131–1139.

    PubMed  Google Scholar 

  • Ballard DH (1997) An Introduction to Natural Computation. MIT Press, Cambridge, MA.

    Google Scholar 

  • Beierholm U, Nielsen CD, Ryge J, Alstrøm P, Kiehn O (2001) Characterization of reliability of spike timing in spinal interneurons during oscillating inputs. J. Neurophysiol. 86: 1858–1868.

    PubMed  Google Scholar 

  • Bell J, Holmes M(1992) Model of the dynamics of receptor potential in a mechanoreceptor. Math. Biosci. 110: 139–174.

    Article  PubMed  Google Scholar 

  • Bensmaïa S (2002) A transduction model of the Meissner corpuscle. Math. Biosci. 176: 203–217.

    Article  PubMed  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA 94: 5411–5416.

    Article  PubMed  Google Scholar 

  • Birnbaum ZW (1952) Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size. J. Am. Statist. Assoc. 47: 425–441.

    Google Scholar 

  • Bolanowski SJ, Gescheider GA, Verrillo RT, Checkosky CM(1988) Four channels mediate the mechanical aspects of touch. J. Acoust.Soc. Am. 84: 1680–1694.

    PubMed  Google Scholar 

  • Cohen RH, Vierck CJ Jr (1993) Population estimates for responses of cutaneous mechanoreceptors to a vertically indenting probe on the glabrous skin of monkeys. Exp. Brain Res. 94: 105–119.

    PubMed  Google Scholar 

  • Freeman AW, Johnson KO (1982a) Cutaneous mechanoreceptors in macaque monkey: Temporal discharge patterns evoked by vibration, and a receptor model. J. Physiol. 323: 21–41.

    PubMed  Google Scholar 

  • Freeman AW, Johnson KO(1982b)Amodel accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey. J. Physiol. 323: 43–64.

    PubMed  Google Scholar 

  • Gaumond RP, Molnar CE, Kim DO (1982) Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J. Neurophysiol. 48: 856–873.

    PubMed  Google Scholar 

  • Goodwin AW, Macefield VG, Bisley JW (1997) Encoding of object curvature by tactile afferents from human fingers. J. Neurophysiol. 78: 2881–2888.

    PubMed  Google Scholar 

  • Goodwin AW, Youl BD, Zimmerman NP (1981) Single quickly adapting mechanoreceptive afferents innervating monkey glabrous skin: Response to two vibrating probes. J. Neurophysiol. 45: 227–242.

    PubMed  Google Scholar 

  • Grandori F, Pedotti A (1982) A mathematical model of the Pacinian corpuscle. Biol. Cybern. 46: 7–16.

    PubMed  Google Scholar 

  • Greenspan JD, Bolanowski SJ (1996) The psychophysics of tactile perception and its peripheral physiological basis. In: L Kruger, ed. Handbook of Perception and Cognition 7: Pain and Touch. Academic Press, San Diego, pp. 25–103.

    Google Scholar 

  • Güclü B, Bolanowski SJ (1999) Population responses of RA mechanoreceptors with hypothetical spatial distributions. Soc. Neurosci. Abstr. 25: 407.

    Google Scholar 

  • Güclü B, Bolanowski SJ (2001) Statistical comparison of the intensity characteristics of monkey and cat mechanoreceptive RA fibers. Soc. Neurosci. Abstr. 27, Program No: 50.4.

  • Gü clü B, Bolanowski SJ (2002) Modeling population responses of rapidly-adapting mechanoreceptive fibers. J. Comput. Neurosci. 12: 201–218.

    Article  PubMed  Google Scholar 

  • Güclü B, Bolanowski SJ (2003a) Distribution of the intensitycharacteristic parameters of cat rapidly adapting mechanoreceptive fibers. Somatosens. Mot. Res. 20: 149–155.

    Article  PubMed  Google Scholar 

  • Güclü B, Bolanowski SJ (2003b) Time-dependent Markov model for the sinusoidal steady-state response of rapidly-adapting fibers. Soc. Neurosci. Abstr. 29, Program No: 172.16.

  • Güclü B, Bolanowski SJ (2003c) Correlation of spatial event plots with simulated population responses of mechanoreceptive fibers. Somatosens. Mot. Res. 20: 199–208.

    Article  PubMed  Google Scholar 

  • Güclü B, Bolanowski SJ (2003d) Frequency responses of cat rapidly adapting mechanoreceptive fibers. Somatosens. Mot. Res. 20: 249–263.

    Article  PubMed  Google Scholar 

  • Güclü B, Bolanowski SJ (2004) Probability of stimulus detection in a model population of rapidly adapting fibers. Neural Comput. 16: 39–58.

    Article  PubMed  Google Scholar 

  • Hubbard SJ (1958) A study of rapid mechanical events in a mechanoreceptor. J. Physiol.-London 141: 198–218.

    PubMed  Google Scholar 

  • Jänig W, Schmidt RF, Zimmermann M (1968) Single unit responses and the total afferent outflow from the cat's foot pad upon mechanical stimulation. Exp. Brain Res. 6: 100–115.

    PubMed  Google Scholar 

  • Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol.-London 286: 283–300.

    PubMed  Google Scholar 

  • Johnson KO (1974) Reconstruction of population response to a vibratory stimulus in quickly adapting mechanoreceptive afferent fiber population innervating glabrous skin of the monkey. J. Neurophysiol. 37: 48–72.

    PubMed  Google Scholar 

  • Lindblom U (1965) Properties of touch receptors in distal glabrous skin of the monkey. J. Neurophysiol. 28: 966–985.

    PubMed  Google Scholar 

  • Loewenstein WR, Skalak R (1966) Mechanical tranmission in a Pacinian corpuscle. An analysis and a theory. J. Physiol.-London 182: 346–378.

    PubMed  Google Scholar 

  • Looft FJ (1994) Response of monkey glabrous skin mechanoreceptors to random-noise sequences: I. Temporal response characteristics. Somatosens. Mot. Res. 11: 327–344.

    PubMed  Google Scholar 

  • Looft FJ (1996a) Response of monkey glabrous skin mechanoreceptors to random noise sequences: II. Dynamic stimulus state analysis. Somatosens. Mot. Res. 13: 11–28.

    PubMed  Google Scholar 

  • Looft FJ (1996b) Response of monkey glabrous skin mechanoreceptors to random noise sequences: III. Spectral analysis. Somatosens. Mot. Res. 13: 235–244.

    PubMed  Google Scholar 

  • Massey FJ, Jr. (1951) The Kolmogorov-Smirnov test for goodness of fit. J. Am. Statist. Assoc. 46: 68–78.

    Google Scholar 

  • Mountcastle VB, Talbot WH, Sakata H, Hyvärinen J (1969) Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32: 452–484.

    PubMed  Google Scholar 

  • Phillips JR, Johnson KO, Hsiao SS (1988) Spatial pattern representation and transformation in monkey somatosensory cortex. Proc. Natl. Acad. Sci. USA 85: 1317–1321.

    PubMed  Google Scholar 

  • Reich DS, Victor JD, Knight BW, Ozaki T, Kaplan E(1997) Response variability and timing precision of neuronal spike trains in vivo. J. Neurophysiol. 77: 2836–2841.

    PubMed  Google Scholar 

  • Ritter T (1998) Normal, Chi-Square and Kolmogorov-Smirnov statistics functions in JavaScript. http://www.ciphersbyritter. com/JAVASCRP/NORMCHIK.HTM.

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30: 769–793.

    PubMed  Google Scholar 

  • Rozanov YA (1969) Probability Theory: A Concise Course. Dover, New York.

    Google Scholar 

  • Srinivasan MA, LaMotte RH (1987) Tactile discrimination of shape: Responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad. J. Neurosci. 7: 1682–1697.

    PubMed  Google Scholar 

  • Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB (1968) The sense of flutter-vibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol. 31: 301–334.

    PubMed  Google Scholar 

  • Tiesinga PHE, José JV (2000) Synchronous clusters in a noisy inhibitory neural network. J. Comput. Neurosci. 9: 49–65.

    Article  PubMed  Google Scholar 

  • Tiesinga PHE, Fellous J-M, Sejnowski TJ (2002a) Spike-time reliability of periodically driven integrate-and-fire neurons. Neurocomputing 44-46: 195–200.

    Article  Google Scholar 

  • Tiesinga PHE, Fellous J-M, Sejnowski TJ (2002b) Attractor reliability reveals deterministic structure in neuronal spike trains. Neural Comput. 14: 1629–1650.

    Article  PubMed  Google Scholar 

  • Whitsel BL, Kelly EF, Xu M, Tommerdahl M, Quibrera M (2001) Frequency-dependent response of SI RA-class neurons to vibrotactile stimulation of the receptive field. Somatosens. Mot. Res. 18: 263–285.

    Article  PubMed  Google Scholar 

  • Whitsel BL, Kelly EF, Quibrera M, Tommerdahl M, Li Y, Favorov OV, Xu M, Metz CB (2003) Time-dependence of SI RA neuron response to cutaneous flutter stimulation. Somatosens. Mot. Res. 20: 45–69.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güçlü, B., Bolanowski, S.J. Tristate Markov Model for the Firing Statistics of Rapidly-Adapting Mechanoreceptive Fibers. J Comput Neurosci 17, 107–126 (2004). https://doi.org/10.1023/B:JCNS.0000037680.56375.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000037680.56375.85

Navigation