Skip to main content
Log in

Interpretation of Ultrasonic Readings for Autonomous Robot Localization

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The work described in this paper is a contribution to providing mobility aid for people with motor disability. It constitutes a part of the VAHM project which aims to design a smart powered wheelchair able to control its displacements in a known environment. Original methods established for the static localisation of the wheelchair using readings provided by a belt of 14 ultrasonic sensors is presented. This approach is based on a classical matching of occupancy grids. Yet because of the presence of the person on the wheelchair any complementary movement intended to obtain additional measures is impossible. That is why our study is centred on the search for the best way to represent ultrasound measures, to model environment and to define the matching criterion in order to mitigate the imperfections of ultrasonic sensors. The method thus developed is implemented on our prototype. Examples are given of the tests carried out in real-life conditions in a typical environment consisting of a flat recreated in our laboratory. The results obtained using real and simulated readings show that the approach is reliable and fitted to our project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anousaki, G. C. and Kyriapoulos, K. J.: Simultaneous localization and map building for mobile robot navigation, IEEE Robotics Automat. Mag. (1999), 42-53.

  2. Atiya, S. and Hager, G. D.: Real-time vision-based robot localization, IEEE Trans. Robotics Automat. 9(6) (1993), 785-800.

    Google Scholar 

  3. Ayrulu, B. and Barshan, B.: Identification of target primitives with multiple decision-making sonars using evidentional reasoning, Internat. J. Robotics Res. 17(6) (1998), 598-623.

    Google Scholar 

  4. Barshan, B. and Baskent, D.: Morphological surface profile extraction with multiple range sensors, Pattern Recognition 34 (2001), 1459-1467.

    Google Scholar 

  5. Borenstein, J., Everett, H. R., Feng, L., and Wehe, D.: Mobile robot positioning sensors and techniques, J. Robotic Systems 14(4) (1997), 231-249.

    Google Scholar 

  6. Borglote, U., Hoyer, H., Buhler, C., Heck, H., and Hoepler, R.: Architectural concepts of a semi-autonomous wheelchair, J. Intelligent Robotic Systems 22 (1998), 233-253.

    Google Scholar 

  7. Bourhis, G. and Agostini, Y.: The VAHM robotized wheelchair: system architecture and human-machine interaction, J. Intelligent Robotic Systems 22 (1998), 269-287.

    Google Scholar 

  8. Bourhis, G., Horn, O., Habert, O., and Pruski, A.: The VAHM project: Autonomous vehicle for people with motor disabilities, IEEE Robotics Automat. Mag. 7(1) (2001), 21-28.

    Google Scholar 

  9. Courcelle, A.: Localisation d'un robot mobile: Application à l'aide à la mobilité des personnes handicapées moteur, Thèse de l'Université de Metz, 2000.

  10. Courcelle, A. and Horn, O.: Ultrasonic data representation: Application to mobile robots localisation, in: Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, Canada, 1998, pp. 559-1564.

  11. Cox, I. J.: Blanche-An experiment in guidance and navigation of an autonomous robot vehicle, IEEE Trans. Robotics Automat. 7(2) (1991), 193-204.

    Google Scholar 

  12. Drumheller, M..: Mobile robot localization using sonar, IEEE Trans. Pattern Anal. Mach. Intelligence 9(2) (1987), 325-332.

    Google Scholar 

  13. Duckett, T. and Nehmzow, U.: Mobile robot self-localization using occupancy histograms and mixture of Gaussian location hypotheses, Robotics Autonom. Systems 34 (2001), 117-129.

    Google Scholar 

  14. Elfes, A.: Sonar-based real-world mapping and navigation, IEEE J. Robotics Automat. 3(3) (1987), 233-249.

    Google Scholar 

  15. Gutierrez-Osuna, R., Janet, J. A., and Luo, R. C.: Modeling of ultrasonic range sensors for localization of autonomous mobile robots, IEEE Trans. Industrial Electronics 45(4) (1998), 654-662.

    Google Scholar 

  16. Harris, K. D. and Recce, M.: Experimental modelling of time of flight sonar, Robotics Autonom. Systems 24 (1998), 33-42.

    Google Scholar 

  17. Horn, O. and Courcelle, A.: Localisation statique d'un fauteuil électrique autonome, RAIROAPII-JESA 31(5) (1997), 867-878.

    Google Scholar 

  18. Horn, O., Courcelle, A., and Kreutner, M.: Le projet VAHM (Véhicule Autonome pour Handicapés Moteur): La localisation, Traitement du Signal 17(3) (2000), 221-231.

    Google Scholar 

  19. Jeom, H. J. and Kim, B. K.: Feature-based probabilistic map building using time and amplitude information of sonar indoor environments, Robotica 19 (2001), 423-437.

    Google Scholar 

  20. Jetto, L., Longhi, S., and Venturini, G.: Development and experimental validation of an adaptative Kalman filter for the localization of mobile robots, IEEE Trans. Robotics Automat. 15(2) (1999), 219-229.

    Google Scholar 

  21. Kieffer, M.: Estimation ensembliste par analyse par intervalles. Application à la localisation d'un véhicule, Thèse de l'Université Paris XI Orsay, 1999.

  22. Kuc, R. and Siegel, M. W.: Physically based simulation model for acoustic sensor robot navigation, IEEE Trans. Pattern Anal. Mach. Intelligence 9(6) (1987), 766-778.

    Google Scholar 

  23. Lankenau, A. and Röfer, T.: A versatile and safe mobility assistant, IEEE Robotics Automat. Mag. 7(1) (2001), 29-37.

    Google Scholar 

  24. Levine, S. P., Bell, D. A., Jaros, L. A., Simpson, R. C., Koren, Y. K., and Borenstein, J.: The NAVCHAIR assistive wheelchair navigation system, IEEE Trans. Rehabilitation Engrg. 7(4) (1999), 443-451.

    Google Scholar 

  25. Lu, F. and Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans, J. Intelligent Robotic Systems 18 (1997), 249-275.

    Google Scholar 

  26. Mazo, M. and the Reasearch Group of the SIAMO Project: An integral system for assisted mobility, IEEE Robotics Automat. Mag. 7(1) (2001), 46-56.

    Google Scholar 

  27. Prabler, E. A. and Milios, E. E.: Position estimation using equidistance lines, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Nagoya, Japan, 1995, pp. 85-92.

  28. Prassler, E., Scholz, J., and Fiorini, P.: A robotic wheelchair for crowded public environments, IEEE Robotics Automat. Mag. 7(1) (2001), 38-45.

    Google Scholar 

  29. Schultz, A. C., Adams, W., and Yamauchi, B.: Integrating exploration, localization, navigation and planning with a common representation, Autonom. Robots 6 (1999), 293-308.

    Google Scholar 

  30. Thrun, S., Fox, D., Burgard, W., and Dellaert, F.: Robust Monte Carlo localization for mobile robots, Artificial Intelligence 128 (2001), 99-141.

    Google Scholar 

  31. Yoder, J. D., Baumgartner, E. T., and Skaar, S. B.: Initial results in the development of a guidance system for a powered wheelchair, IEEE Trans. Rehabilitation Engrg. 4(3) (1996), 143-151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, O., Courcelle, A. Interpretation of Ultrasonic Readings for Autonomous Robot Localization. Journal of Intelligent and Robotic Systems 39, 265–285 (2004). https://doi.org/10.1023/B:JINT.0000021068.04254.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JINT.0000021068.04254.19

Navigation