Skip to main content
Log in

Resource Constrained Shortest Path Problems in Path Planning for Fleet Management

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In the management and control of a vehicle fleet on a road network, the problem arises of finding the best route in relation to the mission of the fleet and to the typology of freight or users. Sometimes the route has to be adapted not only to current traffic conditions, but also to the physical, geometric and functional attributes of the roads, related to their urban location and environmental characteristics.

This problem is approached here through an extension of the classic Shortest Path problem, named Resource Constrained Shortest Path problem (RCSP), where the resources are related to the road link attributes, assumed as relevant to the specific planning problem. A classification scheme of these attributes is first proposed and RCSP is described and reviewed. Next, a General Resource Constrained Shortest Path problem (GRCSP) is defined, which can be found in all cases where it is necessary to plan, statically or dynamically, the path of a vehicle and to respect a set of constraints expressed in terms of parameters and indices associated with the roads on the network. For this general problem a model has been formulated and a Branch and Cut solution approach is proposed. Computational results obtained on test and real networks during the experimentation of a fleet with low emission vehicles are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R. K., Mehlhorn, K., Orlin, J. B. and Tarjan, R. E.: Faster algorithms for the shortest path problem, J. ACM 37(2) (1990), 213–223.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aneja, Y. P., Aggarwal, V. and Nair, K. P.K.: Shortest chain subject to side conditions, Networks 13 (1983), 295–302.

    MathSciNet  Google Scholar 

  3. Avella, P., Boccia, M. and Sforza, A.: A penalty function heuristic for the resource constrained shortest path problem, European J. Oper. Res. 142(2) (2002), 221–230.

    Article  MATH  MathSciNet  Google Scholar 

  4. Azevedo, J. A. and Martins, E. Q. V.: An algorithm for the multiobjective shortest path problem on acyclic networks, Investigacão Operacional 11 (1991), 52–69.

    Google Scholar 

  5. Beasley, J. E. and Christofides, N.: An algorithm for the resource constrained shortest path problem, Networks 19(4) (1989), 379–394.

    MATH  MathSciNet  Google Scholar 

  6. Bellman, R.: On a routing problem, Quart. Appl. Math. 16 (1958), 87–90.

    MATH  MathSciNet  Google Scholar 

  7. Bertsekas, D. P.: A simple and fast label correcting algorithm for shortest paths, Networks 23 (1993), 703–709.

    MATH  Google Scholar 

  8. Bienstock, D.: Experiments with a network design algorithm using ?-approximate linear programs, Technical Report, Columbia University, 1998.

  9. Bienstock, D.: Approximately solving large-scale linear programs. I. Strengthening lower bounds and accelerating convergence, Technical Report 1999-01, Columbia University, 1999.

  10. Carrara, M., Inaudi, D. and Morello, E.: Supervisor function for the on-line urban traffic control & management, In: Proceedings of the Second World Conference on Intelligent Transport Systems (Yokohama, 1995), Vol. 5, pp. 2229–2233.

    Google Scholar 

  11. Cherkassky, B. V., Goldberg, A. V. and Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation, Math. Programming 73 (1996), 129–174.

    Article  MATH  MathSciNet  Google Scholar 

  12. Climaco, J. N. and Martins, E. Q. V.: On the determination of the nondominated paths in a multiobjective network problem, Methods Oper. Res. 40 (1981), 255–258.

    MATH  Google Scholar 

  13. Climaco, J. N. and Martins, E. Q. V.: A bicriterion shortest path algorithm, European J. Oper. Res. 11 (1982), 399–404.

    Article  MATH  MathSciNet  Google Scholar 

  14. Dantzig, G. B.: On the shortest route through a network, Management Sci. 6 (1960), 187–190.

    MATH  MathSciNet  Google Scholar 

  15. Denardo, E. V. and Fox, B. L.: Shortest-route methods: 1. Reaching, pruning, and buckets, Oper. Res. 27 (1979), 161–186.

    MATH  MathSciNet  Google Scholar 

  16. Denardo, E. V. and Fox, B. L.: Shortest-route methods: 2. Group knapsacks, expanded networks, and branch-and-bound, Oper. Res. 27 (1979), 548–566.

    MATH  MathSciNet  Google Scholar 

  17. Deo, N. and Pang, C.: Shortest path algorithms: Taxonomy and annotation, Networks 14 (1984), 275–323.

    MATH  MathSciNet  Google Scholar 

  18. Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M. M., Soumis, F. and Villeneuve, D.: A unified framework for deterministic time constrained vehicle routing and crew scheduling problems, In: T. G. Crainic and G. Laporte (eds), Fleet Management and Logistics, Kluwer Acad. Publ., Boston, 1998, pp. 57–93.

    Google Scholar 

  19. Desrosiers, J., Dumas, Y., Solomon, M. M. and Soumis, F.: Time constrained routing and scheduling, In: M. O. Ball et al. (eds), Handbooks of Operations Research and Management Science, 8: Network Routing, North-Holland, Amsterdam, 1995, pp. 35–139.

    Google Scholar 

  20. Dial, R. B.: Algorithm 360: Shortest path forest with topological ordering, Comm. ACM 12 (1969), 632–633.

    Article  Google Scholar 

  21. Dial, R. B., Glover, F., Karney, D. and Klingman, D.: A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees, Networks 9 (1979), 215–248.

    MATH  MathSciNet  Google Scholar 

  22. Dijkstra, E. W.: A note on two problems in connection with graphs, Numer. Math. 1 (1959), 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  23. Ferulano, G., Gortan, L., Sforza, A. and Tartaro, D.: ATENA pilot project for traffic management in Naples, Presented at ITS 2000 Conference (Turin, Italy, 2000).

  24. Floyd, R. W.: Algorithm 97: Shortest path, Comm. ACM 5 (1962), 345.

    Article  Google Scholar 

  25. Ford, L. R. and Fulkerson, D. R.: Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.

    MATH  Google Scholar 

  26. Gallo, G. and Pallottino, S.: Shortest path methods: A unifying approach, Math. Programming Study 26 (1986), 38–64.

    MATH  MathSciNet  Google Scholar 

  27. Glover, F., Klingman, D. and Napier, A.: A note on finding all shortest paths, Transportation Sci. 8 (1974), 3–12.

    MathSciNet  Google Scholar 

  28. Glover, F., Klingman, D., Phillips, N. and Schneider, R. F.: New polynomial shortest path algorithms and their computational attributes, Management Sci. 31 (1985), 1106–1128.

    MATH  MathSciNet  Google Scholar 

  29. Gu, Z., Nemhauser, G. L. and Savelsbergh, M. W. P.: Cover inequalities for 0-1 linear programs computation, INFORMS J. Comput. 10 (1998), 427–437.

    MathSciNet  Google Scholar 

  30. Handler, G. Y. and Zang, I.: A dual algorithm for the constrained shortest path problem, Networks 10 (1980), 293–310.

    MathSciNet  Google Scholar 

  31. Inaudi, D., Tartaro, D. and Toffolo, S.: A telematic system to manage the traffic in Naples, In: Proceedings of 6th World Congress on Intelligent Transport Systems (Toronto 1999), Paper n. 2194, pp. 8–12.

  32. Jaffe, J. M.: Algorithms for finding paths with multiple constraints, Networks 14 (1984), 95–116.

    MATH  MathSciNet  Google Scholar 

  33. Jensen, P. A. and Berry, R. C.: A constrained shortest path algorithm, Presented at the 39th National ORSA Meeting, Dallas, Texas, USA. Abstract given in ORSA Bull. 19(B-139) (1971).

  34. Joksch, H. C.: The shortest route problem with constraints, J. Math. Anal. Appl. 14 (1966), 191–197.

    Article  MATH  MathSciNet  Google Scholar 

  35. Martins, E. Q. V.: On a multicriterion shortest path problem, European J. Oper. Res. 16 (1984), 236–245.

    Article  MATH  MathSciNet  Google Scholar 

  36. Martins, E. Q. V. and Esteves dos Santos, J. L.: The labelling algorithm for the multiobjective shortest path problem, Technical Report 99/005, Departamento de Matemática, Universidade de Coimbra, 1999.

  37. Mehlhorn, K. and Ziegelmann, M.: Resource constrained shortest paths, In: Lecture Notes in Comput. Sci. 1879, 2000, pp. 326–337.

    MATH  MathSciNet  Google Scholar 

  38. Mehlhorn, K. and Ziegelmann, M.: CNOP-A package for constrained network optimization, In: Lecture Notes in Comput. Sci. 2153, 2001, pp. 17–31.

    Article  MATH  Google Scholar 

  39. Padberg, M. W. and Rinaldi, G.: Optimization of a 512-city symmetric travelling salesman problem by branch and cut, Oper. Res. Lett. 6 (1987), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  40. Padberg, M. W. and Rinaldi, G.: Facet identification for the symmetric travelling salesman polytope, Math. Programming 47 (1990), 219–257.

    Article  MATH  MathSciNet  Google Scholar 

  41. Padberg, M. W. and Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric travelling salesman problems, SIAM Review 33 (1991), 60–100.

    Article  MATH  MathSciNet  Google Scholar 

  42. Pallottino, S. and Scutellà, M. G.: Dual algorithms for the shortest path tree problem, Networks 29 (1997), 125–133.

    Article  MathSciNet  Google Scholar 

  43. Pallottino, S. and Scutellà, M. G.: Shortest path algorithms in transportation models: Classical and innovative aspects, In: P. Marcotte and S. Nguyen (eds), Equilibrium and Advanced Transportation Modelling, Kluwer Acad. Publ., Boston, 1998, pp. 245–281.

    Google Scholar 

  44. Pape, U.: Implementation and efficiency of Moore-algorithms for the shortest route problem, Math. Programming 7 (1974), 212–222.

    Article  MathSciNet  Google Scholar 

  45. White, D. J.: The set of efficient solutions for multiple objective shortest path problems, Comp. Oper. Res. 9(1) (1982), 101–107.

    Article  Google Scholar 

  46. Witzgall, C. and Goldman, A. J.: Most profitable routing before maintenance, Presented at The 27th National ORSA Meeting, Boston, MA, USA. Abstract in ORSA Bull. 13(B-82) (1965).

  47. XPRESS-MP Optimisation Subroutine Library, XOSL, Reference Manual, Release 12, Dash Associates, 2000.

  48. Yen, J. Y.: Finding the lengths of all shortest paths in n-node non-negative distance complete networks using 1/2n 3 additions and n 3 comparisons, J. ACM 19 (1972), 423–424.

    Article  MATH  MathSciNet  Google Scholar 

  49. ZIB, MP-TESTDATA, Maximum Flow Problem Instances. http://elib.zib.de/pub/Packages/mptestdata/.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avella, P., Boccia, M. & Sforza, A. Resource Constrained Shortest Path Problems in Path Planning for Fleet Management. Journal of Mathematical Modelling and Algorithms 3, 1–17 (2004). https://doi.org/10.1023/B:JMMA.0000026675.50719.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMMA.0000026675.50719.ce

Navigation