Skip to main content
Log in

Adaptive Iteration to Steady State of Flow Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Runge–Kutta time integration is used to reach the steady state solution of discretized partial differential equations. Continuous and discrete parameters in the method are adapted to the particular problem by minimizing the residual in each step, if this is possible, or the work to reach convergence. Algorithms for parameter optimization are devised and analyzed. Solutions of the linearized Euler equations and the nonlinear Euler and Navier–Stokes equations for compressible flow illustrate the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brown, P. N., and Saad, Y. (1990). Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481.

    Google Scholar 

  2. Chiu, C., and Kopriva, D. A. (1992). An optimal Runge–Kutta method for steady-state solutions of hyperbolic systems. SIAM J. Numer. Anal. 29(2), 425–438.

    Google Scholar 

  3. Courant, R., Friedrichs, K., and Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM J. 11, 215–234.

    Google Scholar 

  4. Golub, G. H., and Kannan, R. (1986). Convergence of a two-stage Richardson process for nonlinear equations. BIT 26(2), 209–216.

    Google Scholar 

  5. Greenbaum, A. (1997). Iteration Methods for Solving Linear Systems, SIAM, Philadelphia, PA.

    Google Scholar 

  6. Gustafsson, B., Kreiss, H.-O., and Oliger, J. (1996). Time Dependent Problems and Difference Methods, Wiley, New York.

    Google Scholar 

  7. Hackbusch, W. (1985). Multigrid Methods and Applications, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  8. Hairer, E., and Wanner, G. (1996). Solving Ordinary Differential Equations II—Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  9. Hirsch, C. (1990). Numerical Computation of Internal and External Flows, Vols. 1 and 2, Wiley, New York.

    Google Scholar 

  10. Hörnell, K. (1999). Runge–Kutta Time Step Selection for Flow Problems, Ph.D. thesis, Dept. of Scientific Computing, Uppsala University, Uppsala, Sweden.

    Google Scholar 

  11. Jameson, A. (1983). Solution of the Euler equations for two-dimensional transonic flow by a multigrid method. Appl. Math. Comput. 13, 327–355.

    Google Scholar 

  12. Jameson, A., Schmidt, W., and Turkel, E. (1981). Numerical solutions of the Euler equations by the finite volume method using Runge–Kutta time-stepping schemes. AIAA paper 81-1259.

  13. van Leer, B., Lee, W.-T., Roe, P. L., Powell, K. G., and Tai, C.-H. (1992). Design of optimally smoothing multistage schemes for the Euler equations. Comm. Appl. Numer. Methods 8, 761–769.

    Google Scholar 

  14. Lötstedt, P. (1994). Improved convergence to the steady state of the Euler equations by enhanced wave propagation. J. Comput. Phys. 114(1), 34–44.

    Google Scholar 

  15. Luenberger, D. G. (1973). Linear and Nonlinear Programming, Addison–Wesley, Reading, Mass.

    Google Scholar 

  16. Lynn, J. F., and van Leer, B. (1993). Multi-stage schemes for the Euler and Navier–Stokes equations with optimal smoothing. AIAA paper 93-3355.

  17. Martinelli, L., and Jameson, A. (1988). Validation of a multigrid method for the Reynolds averaged equations. AIAA paper 88-0414.

  18. Mavriplis, D. J., and Jameson, A. (1990). Multigrid solution of the Navier–Stokes equations on triangular meshes. AIAA J. 28(8), 1415–1425.

    Google Scholar 

  19. Müller, B. (1990). Linear stability condition for explicit Runge–Kutta methods to solve the compressible Navier–Stokes equations. Math. Meth. Appl. Sci. 12, 139–151.

    Google Scholar 

  20. Nachtigal, N. M., Reichel, L., and Trefethen, L. N. (1992). A hybrid GMRES algorithm for nonsymmetric linear systems. SIAM J. Matrix Anal. Appl. 13(3), 796–825.

    Google Scholar 

  21. Opfer, G. (1984). Richardson's iteration for nonsymmetric matrices. Lin. Alg. Appl. 58, 343–361.

    Google Scholar 

  22. Otto, K. (1996). Analysis of preconditioners for hyperbolic partial differential equations. SIAM J. Numer. Anal. 33(6), 2131–2165.

    Google Scholar 

  23. Saylor, P. E., and Smolarski, D. C. (1991). Implementation of an adaptive algorithm for Richardson's method. Lin. Alg. Appl. 154/156, 515–646.

    Google Scholar 

  24. Swanson, R. C., and Turkel, E. (1985). A multistage time-stepping scheme for the Navier–Stokes equations. AIAA paper 85-0035.

  25. Swanson, R. C., and Radespiel, R. (1991). Cell centered and cell vertex multigrid schemes for the Navier–Stokes equations. AIAA J. 29(5), 697–703.

    Google Scholar 

  26. Reddy, S. C., and Trefethen, L. N. (1992). Stability of the method of lines. Numer. Math. 62, 235–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörnell, K., Lötstedt, P. Adaptive Iteration to Steady State of Flow Problems. Journal of Scientific Computing 20, 331–354 (2004). https://doi.org/10.1023/B:JOMP.0000025928.28208.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000025928.28208.32

Navigation