Skip to main content
Log in

Moving Mesh Method with Error-Estimator-Based Monitor and Its Applications to Static Obstacle Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The main objective of this work is to demonstrate that sharp a posteriori error estimators can be employed as appropriate monitor functions for moving mesh methods. We illustrate the main ideas by considering elliptic obstacle problems. Some important issues such as how to derive the sharp estimators and how to smooth the monitor functions are addressed. The numerical schemes are applied to a number of test problems in two dimensions. It is shown that the moving mesh methods with the proposed monitor functions can effectively capture the free boundaries of the elliptic obstacle problems and reduce the numerical errors arising from the free boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ainsworth, M., and Oden, J. T. (1993). A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65, 23–50.

    Google Scholar 

  2. Ainsworth, M., and Oden, J. T. (1997). A posteiori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142, 1–88.

    Google Scholar 

  3. Ainsworth, M., Oden, J. T., and Lee, C. Y. (1993). Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9, 22–33.

    Google Scholar 

  4. Azarenok, B. N. (2002). Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics. SIAM J. Numer. Anal. 40, 651–682.

    Google Scholar 

  5. Baines, M. J. (1994). Moving Finite Elements, Oxford University Press.

  6. Beckett, G., Mackenzie, J. A., Ramage, A., and Sloan, D. M. (2002). Computational solution of two-dimensional unsteady PDEs using moving mesh methods. J. Comput. Phys. 182, 478–495.

    Google Scholar 

  7. Brackbill, J. U., and Saltzman, J. S. (1982). Adaptive zoning for singular problems in two dimensions. J. Comput. Phys. 46, 342–368.

    Google Scholar 

  8. Ceniceros, H. D., and Hou, T. Y. (2001). An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172, 609–639.

    Google Scholar 

  9. Chen, Z. M., and Nochetto, R. H. (2000). Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548.

    Google Scholar 

  10. Ciarlet, P. G. (1978). The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam.

    Google Scholar 

  11. Davis, S. F., and Flaherty, J. E. (1982). An adaptive finite element method for initial-boundary value problems for partial differential equations. SIAM J. Sci. Stat. Comp. 3, 6–27.

    Google Scholar 

  12. Dvinsky, A. S. (1991). Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476.

    Google Scholar 

  13. Elliott, C. M., and Ockendon, J. R. (1982). Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, Vol. 59, Pitman, Boston.

    Google Scholar 

  14. French, D. A., Larsson, S., and Nochetto, R. H. (2001). A posteriori error estimates for a finite element approximation of the obstacle problem in L. Comput. Methods Appl. Math. 1, 18–38.

    Google Scholar 

  15. Friedman, A. (1982). Variational Principles and Free-Boundary Problems, Academic Press, New York.

    Google Scholar 

  16. Glowinski, R., Lions, J. L., and Tremolieres, R. (1976). Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam.

    Google Scholar 

  17. He, B. S. (1994). Solving a class of linear projection equations. Numer. Math. 68, 71–80.

    Google Scholar 

  18. Kinderlehrer, D., and Stampacchia, G. (1980). An Introduction to Variational Inequalities and Their Applications, Academic Press, New York.

    Google Scholar 

  19. Kornhuber, R. (1996). A posteriori error estimates for elliptic variational inequalities. Comput. Math. Appl. 31, 49–60.

    Google Scholar 

  20. Kufner, A., John, O., and Fucik, S. (1977). Function Spaces, Nordhoff, Leyden, The Netherlands.

    Google Scholar 

  21. Li, S., and Petzold, L. (1997). Moving mesh methods with upwinding schemes for time-dependent PDEs. J. Comput. Phys. 131, 368–377.

    Google Scholar 

  22. Li, R., Liu, W. B., Ma, H.-P., and Tang, T. (2002). Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349.

    Google Scholar 

  23. Li, R., Tang, T., and Zhang, P. (2001). Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588.

    Google Scholar 

  24. Li, R., Tang, T., and Zhang, P. (2002). A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393.

    Google Scholar 

  25. Liu, W. B., Ma, H.-P., and Tang, T. (2001). Mixed error estimates for elliptic obstacle problems. Adv. Comput. Math. 15, 261–283.

    Google Scholar 

  26. Liu, W. B., and Yan, N. (2000). A posteriori error estimates for a class of variational inequalities. J. Sci. Comput. 35, 361–393.

    Google Scholar 

  27. Miller, K., and Miller, R. N. (1981). Moving finite element methods I. SIAM J. Numer. Anal. 18, 1019–1032.

    Google Scholar 

  28. Ren, Y., and Russell, R. D. (1992). Moving mesh techniques based upon equidistribution, and their stability. SIAM J. Sci. Stat. Comput. 13, 1265–1286.

    Google Scholar 

  29. Tang, H. Z., and Tang, T. (2003). Moving mesh methods for one-and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515.

    Google Scholar 

  30. Verfurth, R. (1989). A posteriori error estimators for the Stokers equations. Numer. Math. 55, 309–325.

    Google Scholar 

  31. Verfurth, R. (1996). A Review of a posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner.

  32. Winslow, A. (1967). Numerical solution of the quasi-linear Poission equation in a nonuniform triangle mesh. J. Comput. Phys. 1, 149–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Liu, W.B. & Ma, H.P. Moving Mesh Method with Error-Estimator-Based Monitor and Its Applications to Static Obstacle Problem. Journal of Scientific Computing 21, 31–55 (2004). https://doi.org/10.1023/B:JOMP.0000027954.83289.00

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000027954.83289.00

Navigation