Skip to main content
Log in

A Fast Spectral Subtractional Solver for Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper presents a fast subtractional spectral algorithm for the solution of the Poisson equation and the Helmholtz equation which does not require an extension of the original domain. It takes O(N 2 log N) operations, where N is the number of collocation points in each direction. The method is based on the eigenfunction expansion of the right hand side with integration and the successive solution of the corresponding homogeneous equation using Modified Fourier Method. Both the right hand side and the boundary conditions are not assumed to have any periodicity properties. This algorithm is used as a preconditioner for the iterative solution of elliptic equations with non-constant coefficients. The procedure enjoys the following properties: fast convergence and high accuracy even when the computation employs a small number of collocation points. We also apply the basic solver to the solution of the Poisson equation in complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Averbuch, A., Israeli, M., and Vozovoi, L. (1997). On fast direct elliptic solver by modified Fourier method. Numer. Algorithms 15, 287–313.

    Google Scholar 

  2. Averbuch, A., Israeli, M., and Vozovoi, L. (1998). A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19, 933–952.

    Google Scholar 

  3. Bangia, A. K., Batcho, P. F., Kevrekidis, I. G., and Karniadakis, G. E. (1997). Unsteady two-dimensional flows in complex geometries: Comparative bifurcation studies with global eigenfunction expansions. SIAM J. Sci. Comput. 18(3), 775–805.

    Google Scholar 

  4. Baszenski, G., and Delvos, F.-J. (1983). Accelerating the rate of convergence of bivariate Fourier expansions. In Approximation Theory, IV (College Station, Texas), Academic Press, New York, pp. 335–340.

    Google Scholar 

  5. Baszenski, G., Delvos, F.-J., and Tasche, M. (1995). A united approach to accelerating trigonometric expansions. Concrete analysis. Comput. Math. Appl. 30(3–6), 33–49.

    Google Scholar 

  6. Braverman, E., Israeli, M., Averbuch, A., and Vozovoi, L. (1998). A fast 3–D Poisson solver of arbitrary order accuracy. J. Comput. Phys. 144, 109–136.

    Google Scholar 

  7. Braverman, E., Israeli, M., and Averbuch, A. (1999). A fast spectral solver for 3–D Helmholtz equation. SIAM J. Sci. Comput. 20(6), 2237–2260.

    Google Scholar 

  8. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1989). Spectral Methods in Fluid Dynamics, Springer-Verlag.

  9. Chen, H., Su, Y., and Shizgal, B. D. (2000). A direct spectral collocation Poisson solver in polar and cylindrical coordinates. J. Comput. Phys. 160, 453–469.

    Google Scholar 

  10. Dimitropoulos, C. D., Edwards, B. J., Chae, K. S., and Beris, A. N. (1998). Efficient pseudospectral flow simulations in moderately complex geometries. J. Comput. Phys. 144(2), 517–549.

    Google Scholar 

  11. Eckhoff, K. (1998). On a high order numerical method for functions with singularities. Math. Comp. 67(223), 1063–1087.

    Google Scholar 

  12. Næss, O. F., and Eckhoff, K. S. (2002). A modified Fourier–Galerkin method for the Poisson and Helmholtz equations. J. Sci. Comput. 17(1–4), 529–539.

    Google Scholar 

  13. Elghaoui, M., and Pasquetti, R. (1996). A spectral embedding method applied to the advection-diffusion equation. J. Comput. Phys. 125, 464–476.

    Google Scholar 

  14. Elghaoui, M., and Pasquetti, R. (1999). Mixed spectral-boundary element embedding algorithms for the Navier–Stokes equations in the vorticity-stream function formulation. J. Comput. Phys. 153, 82–100.

    Google Scholar 

  15. Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia.

    Google Scholar 

  16. Gottlieb, D., and Shu, C. W. (1997). On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668.

    Google Scholar 

  17. Greengard, L., and Lee, J.-Y. (1996). A direct adaptive Poisson solver of arbitrary order accuracy. J. Comput. Phys. 125, 415–424.

    Google Scholar 

  18. Israeli, M., Vozovoi, L., and Averbuch, A. (1993). Domain decomposition methods for solving parabolic PDEs on multiprocessors. Appl. Numer. Math. 12, 193–212.

    Google Scholar 

  19. Israeli, M., Vozovoi, L., and Averbuch, A. (1993). Spectral multi-domain technique with Local Fourier basis. J. Sci. Comput. 8, 135–149.

    Google Scholar 

  20. Israeli, M., Braverman, E., and Averbuch, A. (2002). A hierarchical 3–D Poisson modified Fourier solver by domain decomposition. J. Sci. Comput. 17(1–4), 471–479.

    Google Scholar 

  21. Karniadakis, E. G., Israeli, M., and Orszag, S. A. (1991). High-Order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443.

    Google Scholar 

  22. McKenney, A., Greengard, L., and Mayo, A. (1995). A fast Poisson solver for complex geometries. J. Comput. Phys. 118, 348–355.

    Google Scholar 

  23. Orszag, S. (1979). Spectral methods for problems in complex geometries. In Advances in Computer Methods for Partial Differential Equations, III (Proc. Third IMACS Internat. Sympos., Lehigh University, Bethlehem, PA, 1979), IMACS, New Brunswick, N.J., pp. 148–157.

    Google Scholar 

  24. Schumack, M. R., Schultz, W. W., and Boyd, J. P. (1991). Spectral method solution of the Stokes equations on non-staggered grids. J. Comput. Phys. 94, 30.

    Google Scholar 

  25. Skölermo, G. (1975). A Fourier method for numerical solution of Poisson's equation. Math. Comput. (U.S.A.) 29, 697–711.

    Google Scholar 

  26. Vozovoi, L., Israeli, M., and Averbuch, A. (1995). Application of the multidomain local Fourier method for CFD in complex geometries. In Leutloff, D., and Srivastava, R. C. (eds.), Computational Fluid Dynamics, Springer-Verlag, Berlin, Heidelberg, NY, pp. 245–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braverman, E., Epstein, B., Israeli, M. et al. A Fast Spectral Subtractional Solver for Elliptic Equations. Journal of Scientific Computing 21, 91–128 (2004). https://doi.org/10.1023/B:JOMP.0000027957.39059.6b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000027957.39059.6b

Navigation