Skip to main content
Log in

Early Cognitive Vision: Using Gestalt-Laws for Task-Dependent, Active Image-Processing

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The goal of this review is to discuss different strategies employed by the visual system to limit data-flow and to focus data processing. These strategies can be hard-wired, like the eccentricity-dependent visual resolution or they can be dynamically changing like mechanisms of visual attention. We will ask to what degree such strategies are also useful in a computer vision context. Specifically we will discuss, how to adapt them to technical systems where the substrate for the computations is vastly different from that in the brain. It will become clear that most algorithmic principles, which are employed by natural visual systems, need to be reformulated to better fit to modern computer architectures. In addition, we will try to show that it is possible to employ multiple strategies in parallel to arrive at a flexible and robust computer vision system based on recurrent feedback loops and using information derived from the statistics of natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams D and Horton J (2003) A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. Journal of Neuroscience 23: 3771–3789

    Google Scholar 

  • Aertsen AM, Gerstein GL, Habib MK and Palm G (1989) Dynamics of neuronal firing correlation: modulation of ''effective connectivity''. Journal of Neurophysiology 61(5): 900–917

    Google Scholar 

  • Albright TD and Desimone R (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 65: 582–592

    Article  Google Scholar 

  • Aloimonos Y, Weiss I and Bandopadhay A (1987) Active vision. International Journal of Computer Vision 1: 333–356

    Article  Google Scholar 

  • Broadbend D (1965) Information processing in the nervous system. Science 150: 457–462

    Google Scholar 

  • Brooks R (1991) Intelligence without reason. International Joint Conference on Arti-ficial Intelligence pp. 569–595

  • Büchel C and Friston K (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fmri. Cerebral Cortex 7: 768–778

    Article  Google Scholar 

  • Calow D, Krüger N, Lappe M and Wörgötter F (2004) Space variant filtering of optic flow for robust three dimensional motion estimation. In: Engineering in Intelligent Systems-EIS 2004

  • Chapman B (2004) The development of eye-specific segregation in the retinogenicolostriate pathway. In: Chalupa LM and Werner JS (eds) The Visual Neurosciences, Vol. 1(8), pp. 108–116. Cambridge, MA, USA, MIT Press

    Google Scholar 

  • Chapman B and Stone L (1996) Turning a blind eye to cortical receptive fields. Neuron 16: 9–12

    Article  Google Scholar 

  • Connor C, DC P, Gallant J and van Essen D (1997) Spatial attention effects in macaque area v4. Journal of Neuroscience 17: 3201–3214

    Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the USA 81: 4586–4590

    Google Scholar 

  • Das A and Gilbert C (1999) Topography of contextual modulations mediated by shortrange interactions in primary visual cortex. Nature 399: 655–661

    Article  Google Scholar 

  • DeAngelis G, Anzai A, Ohzawa I and Freeman R (1995) Receptive field structure in the visual cortex: does selective stimulation induce plasticity? In: Proceedings of the National Academy of Science, pp. 9682–9686, USA

  • Dennett DC (1984) Cognitive wheels: The frame problem of AI. In: Hookway C(ed) Minds, Machines and Evolution, pp. 129–151. Cambridge University Press

  • Desimone R and Duncan J (1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18: 193–222

    Article  Google Scholar 

  • Dossi R, Nunez C and Steriade M (1992) Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. Journal of Physiology 447: 215–234

    Google Scholar 

  • Dragoi V, Sharma J and Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28(1): 287–298

    Article  Google Scholar 

  • Erwin E, Obermayer K and Schulten K (1995) Models of orientation and ocular dominance columns in the visual cortex: a critical comparison. Neural Computation 7: 425–468

    Google Scholar 

  • Eyding D, Macklis JD, Neubacher U, Funke K and Wörgötter F (2003) Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity. Journal of Neuroscience 23(18): 7021–7033

    Google Scholar 

  • Felsberg M and Krüger N (2003) A probablistic definition of intrinsic dimensionality for images. Pattern Recognition, 24th DAGM Symposium

  • Felsberg M and Sommer G (2001) The monogenic signal. IEEE Transactions on Signal Processing 49(12): 3136–3144

    Article  Google Scholar 

  • Funke K and Eysel U (1992) Eeg-dependent modulation of response dynamics of cat ''dLGN'' relay cells and the contribution of corticogeniculate feedback. Brain Research 573: 217–227

    Article  Google Scholar 

  • Geman S, Bienenstock E and Doursat R (1995) Neural networks and the bias/variance dilemma. Neural Computation 4: 1–58

    Google Scholar 

  • Gilbert C (1998) Adult cortical dynamics. Physiology Reviews 78: 467–485

    Google Scholar 

  • Gilbert C and Wiesel T (1990) The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Research 30: 1689–1701

    Article  Google Scholar 

  • Grossberg S, Mingolla E and Ross W (1994) A neural theory of visual search: Interactions of boundary, surface, spatial and object representations. Psychological Review 101: 470–489

    Article  Google Scholar 

  • Gulyas B, Orban G, Duysens J and Maes H (1987) The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. Journal of Neurophysiology 57: 1767–1791

    Google Scholar 

  • Gulyas B, Spileers W and Orban G (1990) Modulation by a moving texture of cat area 18 neuron responses to moving bars. Journal of Neurophysiology 63: 404–423

    Google Scholar 

  • Hamker FH (2003) The reentry hypothesis: linking eye movements to visual perception. Jounal of Vision 11: 808–816

    Google Scholar 

  • Hammond P and McKay D (1975) Differential responses of cat visual cortical cells to textured stimuli. Experimental Brain Research 22: 427–430

    Article  Google Scholar 

  • Hammond P and McKay D (1977) Differential responsiveness of imple and complex cells in cat striate cortex to visual texture. Experimental Brain Research 30: 275–296

    Article  Google Scholar 

  • Hammond P and McKay D (1981) Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex. Journal of Physiology 319: 431–442

    Google Scholar 

  • Huang J, Lee AB and Mumford D (2000) Statistics of range images. CVPR

  • Hubel DH and Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7(11): 3378–3415

    Google Scholar 

  • Ikeda H and Wright MJ (1974) Sensitivity of neutones in visual cortex (area 17) under different levels of anaesthesia. Experimental Brain Research 20: 471–484

    Article  Google Scholar 

  • Johnston, A (1986) A spatial property of the retino-cortical mapping. Spatial vision 1: 319–331

    Google Scholar 

  • Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nature 290: 91–97

    Article  Google Scholar 

  • Kastner S, Nothdurft H and Pigarev I (1997) Neuronal correlates of pop-out in cat striate cortex. Vision Research 37: 371–376

    Article  Google Scholar 

  • Knierim J and v. Essen D (1992) Neuronal responses to static texture patterns in area v1 of the alert macaque monkey. Journal of Neurophysiology 67: 961–980

    Google Scholar 

  • Körding KP and Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427: 244–247

    Article  Google Scholar 

  • Krüger N and Felsberg M (2003) A continuous formulation of intrinsic dimension. Proceedings of the British Machine Vision Conference

  • Krüger N and Wörgötter F (2002) Multi modal estimation of collinearity and parallelism in natural image sequences. Network: Computation in Neural Systems 13: 553–576

    Article  Google Scholar 

  • Krüger N and Wörgötter F (2004) Statistical and deterministic regularities: Utilization of motion and grouping in biological and artificial visual systems. Advances in Imaging and Electron Physics, in press

  • Krüger N, Felsberg M, Gebken C and Pörksen M (2002) An explicit and compact coding of geometric and structural information applied to stereo processing. Proceedings of the workshop 'Vision, Modeling and Visualization 2002'

  • Krüger N, Lappe M and Wörgötter F (2004) Biologically motivated multi-modal processing of visual primitives. The Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour 1(5): in press.

  • Lamme V (1995) The neurophysiology of figure-ground segregation in primary visual cortex. Journal of Neuroscience 15: 1605–1615

    Google Scholar 

  • Lappe M (1996) Functional consequences of an integration of motion and stereopsis in area MT of monkey extrastriate visual cortex. Neural Computation 8: 1449–1461

    Google Scholar 

  • Lappe M (1998) A model of the combination of optic flow and extraretinal eye movement signals in primate extrastriate visual cortex. Neural Networks 11: 397–414

    Article  Google Scholar 

  • Livingstone MS and Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4(1): 309–356

    Google Scholar 

  • Mallot HA (1985) An overall description of retinotopic mapping in the cat's visual cortex areas 17, 18, and 19. Biological Cybernetics, 52: 42–51

    Article  Google Scholar 

  • Marr D (1982) Vision. W. H. Freeman and Company, New York

    Google Scholar 

  • Mather G and Verstraten F (1998). The Motion Aftereffect: A Modern Perspective. MIT Press, Cambridge

    Google Scholar 

  • Maunsell JHR and McAdams CJ (2001) Effects of attention on the responsiveness and selectivity of individual neurons in visual cerebral cortex. In: Braun J, Koch C and Davis JL (ed), Visual Attention and Cortical Circuits, pp. 103–119. Cambridge, MA, USA, MIT Press

    Google Scholar 

  • McAdams C and Maunsell J (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area v4. Journal of Neuroscience 19: 431–441

    Google Scholar 

  • McCane B, Galvin B and Novins K (1998) On the evaluation of optical flow algorithms. In: Fifth International Conference on Control, Automation, Robotics & Vision, Vol. 1, pp. 1563–1567, Singapore

    Google Scholar 

  • Moran J and Desimone R (1985) Selective attention gates visual processing in extrastriate cortex. Science 229: 782–784

    Google Scholar 

  • Munk M, Roelfsema P, Engel A and Singer W (1996) Role of reticular activation in the modulation of intracortical synchronization. Science 272: 271–274

    Google Scholar 

  • Nagel HH and Enkelmann W (1986) An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 8: 565–593

    Google Scholar 

  • Neisser U (1967) Cognitive Psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Niebur E and Wörgötter F (1994) Design principles of columnar organization in visual cortex. Neural Computation 6: 602–614

    Google Scholar 

  • Niebur E, Koch C and Rosin C (1993) An oscillation-based model for the neuronal basis of attention. Vision Research 33(18): 2789–2802

    Article  Google Scholar 

  • Nothdurft H, Gallant J and v.Essen D (1999) Response modulation by texture surround in primate area v1: correlates of ''popout'' under anesthesia. Visual Neuroscience, 16: 15–34

    Article  Google Scholar 

  • Orban G, Gulyas B and Vogels R (1987) Influence of a moving textured background on direction selectivity of cat striate neurons. Journal of Neurophysiology 57: 1792–1812

    Google Scholar 

  • Orban G, Gulyas B and Spileers W(1988) Influence of moving textured backgrounds on responses of cat area 18 cells to moving bars. Progress in Brain Research, 75: 137–145

    Google Scholar 

  • Peterhans E and von der Heydt R (1993) Functional organization of area V2 in the alert macaque. European Journal of Neuroscience, 5(5): 509–524

    Google Scholar 

  • Pettet M and Gilbert C (1992) Dynamic changes in receptive-field size in cat primary visual cortex. In: Proceedings of the National Academic of Sciences, pp. 8366–8370. USA

  • Posner M, Cohen Y and Rafal R (1982) Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London B 298: 187–198

    Google Scholar 

  • Prodöhl C, Würtz RP and von der Malsburg C (2003) Learning the gestalt rule of collinearity from object motion. Neural Computation 15(8): 1865–1896

    Article  Google Scholar 

  • Pugeault N and Krüger N (2003) Multi-modal matching applied to stereo. Proceedings of the BMVC 2003

  • Pugeault N, Wörgötter F and Krüger N (2004) A non-local stereo similarity based on collinear groups. Fourth International ICSC Symposium on Engineering of Intelligent Systems

  • Rao RPN and Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2: 79–87

    Article  Google Scholar 

  • Rizzolatti G, Riggio L, Dascola I and Umiltá C (1987) Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologica 25: 31–40

    Article  Google Scholar 

  • Schwartz EL (1977) Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics 25: 181–194

    Google Scholar 

  • Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Research 20: 645–669

    Article  Google Scholar 

  • Shipp S and Zeki S (2002a) The functional organization of area V2, I: specialization across stripes and layers. Visual Neuroscience 19(2): 187–210

    Article  Google Scholar 

  • Shipp S and Zeki S (2002b) The functional organization of area V2, II: the impact of stripes on visual topography. Visual Neuroscience 19(2): 211–231

    Article  Google Scholar 

  • Sillito A and Jones H (1996) Context-dependent interactions and visual processing in v1. Journal of Physiology (Paris) 90: 205–209

    Google Scholar 

  • Sillito A, Grieve K, Jones H, Cudeiro J and Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378: 492–496

    Article  Google Scholar 

  • Somers DC, Nelson SB and Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience 15(8): 5448–5465

    Google Scholar 

  • Spillmann L and Ehrenstein WH (2004) Gestalt factors in the visual neurosciences. In: Chalupa LM and Werner JS (ed) The Visual Neurosciences, Vol. 2(106), pp. 1573–1589. Cambridge, MA, USA, MIT Press

    Google Scholar 

  • Steriade M (1991) Cerebral Cortex, Vol. 9, chapter Alertness, quiet sleep, dreaming, pp. 279–357. Kluwer Academic/Plenum Publishers

    Google Scholar 

  • Suarez H, Koch C and Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. Journal of Neuroscience 15(10): 6700–6719

    Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex: A review of models. Network: Computation in Neural Systems 7: 161–247

    Article  Google Scholar 

  • Treisman A (1969) Strategies and models of selective attention. Psychological Review 76: 282–299

    Google Scholar 

  • Treisman A and Gelade G (1980) A feature-integration theory of attention. Cognitive Psychology 12: 97–136

    Article  Google Scholar 

  • Treue S and Martinez Trujillo J (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399: 575–579

    Article  Google Scholar 

  • Ts'o DY and Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8(5): 1712–1727

    Google Scholar 

  • Ts'o DY, Roe AW and Gilbert CD (2001) A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Research 41(10-11): 1333–1349

    Article  Google Scholar 

  • Ungerleider LG and Pasternak T (2004) Ventral and dorsal cortical processing streams. In: Chalupa LM and Werner JS (ed) The Visual Neurosciences, Vol. 1(34), pp. 541–562. Cambridge, MA, USA, MIT Press

    Google Scholar 

  • Volchan E and Gilbert C (1994) Interocular transfer of receptive field expansion in cat visual cortex. Vision Research 35: 1–6

    Article  Google Scholar 

  • Wolfe J (1998) Attention, chapter Visual Search, pp. 13–74. Psychology Press Ltd

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research 171(1): 11–28

    Article  Google Scholar 

  • Wörgötter F, Suder K, Zhao Y, Kerscher N, Eysel U and Funke K (1998) Statedependent receptive-field restructuring in the visual cortex. Nature 396: 165–168

    Article  Google Scholar 

  • Wörgötter F, Eyding D, Macklis JD and Funke K (2002) The influence of the corticothalamic projection on responses in thalamus and cortex. Philosophical Transactions of the Royal Society of London B Biological Science 357(1428): 1823–1834

    Article  Google Scholar 

  • Wurtz R, Goldberg M and Robinson D (1982) Brain mechanisms of visual attention. Scientific American 246: 124–135

    Google Scholar 

  • Zeki SM (1978) Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology 277: 273–290

    Google Scholar 

  • Zipser K, Lamme V and Schiller P (1996) Contextual modulation in primary visual cortex. Journal of Neuroscience 15: 7376–7389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florentin Wörgötter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wörgötter, F., Krüger, N., Pugeault, N. et al. Early Cognitive Vision: Using Gestalt-Laws for Task-Dependent, Active Image-Processing. Natural Computing 3, 293–321 (2004). https://doi.org/10.1023/B:NACO.0000036817.38320.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NACO.0000036817.38320.fe

Navigation