Skip to main content
Log in

Ensemble of Evolving Neural Networks in Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The ensemble of evolving neural networks, which employs neural networks and genetic algorithms, is developed for classification problems in data mining. This network meets data mining requirements such as smart architecture, user interaction, and performance. The evolving neural network has a smart architecture in that it is able to select inputs from the environment and controls its topology. A built-in objective function of the network offers user interaction for customized classification. The bagging technique, which uses a portion of the training set in multiple networks, is applied to the ensemble of evolving neural networks in order to improve classification performance. The ensemble of evolving neural networks is tested by various data sets and produces better performance than both classical neural networks and simple ensemble methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitra, S., Pal, S. K. and Mitra, P.: 'Data mining in soft computing framework: A Survey', IEEE Trans. Neural Networks, 13(1) (2002), 3–14.

    Article  Google Scholar 

  2. Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A. and Jain, A. K.: 'Dimensionality reduction using genetic algorithms', IEEE Trans. Evol. Comput., 4(2) (2000), 164–171.

    Article  Google Scholar 

  3. Lanzi, P. L.: 'Fast feature selection with genetic algorithms: a filter approach', In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 537–540, 1997.

  4. Chang, E. J. and Lipmann, R. P.: 'Using genetic algorithms to improve pattern classifi-cation performance', In: Proceedings of Neural Information Processing Systems, pp. 797–803, 1991.

  5. Yao, X. and Liu, Y.: 'A New evolutionary system for evolving artificial neural networks', IEEE Trans. Neural Networks, 8(3) (1997), 694–713.

    Article  Google Scholar 

  6. Siddique, M. N. H. and Tokhi, M. O.: 'Training Neural Networks: Backpropagation vs. Genetic Algorithms', In: Proceedings of the IEEE International Joint Conference on Neural Networks, Vol. 4, pp. 2673–2678, 2001.

  7. Munro, P. W.: 'Genetic Search for Optimal Representations in Neural Networks', In: International Conference on Artificial Neural Nets and Genetic Algorithms, pp. 628–634, 1993.

  8. Chellapilla, K. and Fogel, D. B.: 'Evolving an expert checkers playing program without using human expertise', IEEE Trans. Evol. Comput., 5(4) (2001), 422–428.

    Article  Google Scholar 

  9. Yen, G. G. and Lu, H.: 'Hierarchical genetic algorithm based neural network design', In: IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, pp. 168–175, 2000.

  10. Schaffer, J. D., Whitley, D. and Eshelman, L. J.: 'Combinations of genetic algorithms and neural networks: a survey of the state of art', In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, pp. 1–37, 1992.

  11. Ling, S. H., Lam, H. K., Leung, F. H. F. and Tam, P. K. S.: 'Learning of neural network parameters using a fuzzy genetic algorithm', In: Proceedings of the Congress on Evolutionary Computation, Vol. 2, pp. 1928–1933, 2002.

    Article  Google Scholar 

  12. Whitehead, B. A. and Choate, T. D.: 'Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction', IEEE Trans. Neural Networks, 7(4) (1996), 869–880.

    Article  Google Scholar 

  13. Breiman, L.: 'Bias, variance, and arcing classifiers', Technical Report 460, University of California–Berkeley, Berkeley, CA, 1996.

    Google Scholar 

  14. Opitz, D. and Maclin, R.: 'Popular ensemble methods: an empirical study', J. Artificial Intell. Res.,11 (1999), 169–198.

    Google Scholar 

  15. Kittler, J., Hatef, M., Duin, R. P. W. and Matas, J.: 'On Combining Classifiers', IEEE Trans. Pattern Anal. Mach. Intell., 20(3) (1998), pp. 226–239.

    Article  Google Scholar 

  16. Breiman, L.: 'Stacked regressions', Mach. Learning, 24(1) (1996), 49–64.

    Article  Google Scholar 

  17. Hansen, L. and Salamon, P., 'Neural network ensembles', IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 993–1001.

    Article  Google Scholar 

  18. Schapire, R., Freund, Y., Bartlett, P. and Lee, W.: 'Boosting the margin: a new explanation for the effectiveness of voting methods', In: Proceedings of the Fourteenth International Conference of Machine Learning, pp. 322–330, 1997.

  19. Sohn, S. and Dagli, C. H.: 'Evolving multiple neural networks', Intell. Eng. Sys. through Artificial Neural Networks, 12 (2002), 9–14.

    Google Scholar 

  20. Sohn, S. and Dagli, C. H.: 'Combining evolving neural network classifiers using bagging', In: Proceedings of IEEE International Joint Conference on Neural Networks, Vol. 4, pp. 3218–3222, 2003.

    Google Scholar 

  21. Riedmiller, M. and Braun, H.: 'A direct adaptive method for faster backpropagation learning: the RPROP algorithm', In: Proceedings of the IEEE International Conference on Neural Networks, Vol. 1, pp. 586–591, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, S., Dagli, C.H. Ensemble of Evolving Neural Networks in Classification. Neural Processing Letters 19, 191–203 (2004). https://doi.org/10.1023/B:NEPL.0000035600.72270.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEPL.0000035600.72270.f3

Navigation