Skip to main content
Log in

Multiparameter Schemes for Evolutionary Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Multiparameter extensions (MP) of (linear and nonlinear) descent methods have been proposed for the solution of finite dimensional time independent problems; these new methods are based on a different treatment of several blocks of components of the solution, basically via the substitution of a scalar relaxation by a (suitable) matricial relaxation. Similarly, the Nonlinear Galerkin Method (NLG), that stems from the dynamical system theory, propose to apply distinct temporal integration schemes to different sets of data scales when solving dissipative PDEs. In this paper, the algebraic similarity of Richardson iteration and Forward-Euler time integration is extended to new grounds through the expansion of the realm of MP methods to the field of the numerical integration of dissipative PDEs. The separation of the structures is realized by the utilization of hierarchical preconditioners in finite differences, which are conjugated to a MP temporal integration steeming from NLG theory. Numerical examples of fluid dynamics problems show the improved temporal stability of these new methods as compared to the classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Bank, Hierarchical bases and the finite elements method, in: Acta Numerica, 1996 (Cambridge Univ. Press, Cambridge, 1996) pp. 1–43.

    Google Scholar 

  2. C. Brezinski, Variations on Richardson's method and acceleration, in: Numerical Analysis. A Numerical Analysis Conf. in Honour of Jean Meinguet, Bull. Soc. Math. Belg. (1996) 33–44.

  3. C. Brezinski, Multiparameter descent methods, Linear Algebra Appl. 296 (1999) 113–142.

    Google Scholar 

  4. C. Brezinski, Acceleration procedures for matrix iterative methods, Note Ano 423 (2001).

  5. C. Brezinski and J.-P. Chehab, Multiparameter iterative schemes for the solution of systems of linear and nonlinear equations, SIAM J. Sci. Comput. 20(6) (1999) 2140–2159.

    Google Scholar 

  6. C. Calgaro, J. Laminie and R. Temam, Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretizations, Appl. Numer. Math. 23 (1997) 403–442.

    Google Scholar 

  7. J.-P. Chehab, A nonlinear adaptive multiresolution method in finite differences with incremental unknowns, Math. Modelling Numer. Anal. 29 (1995) 451–475.

    Google Scholar 

  8. J.-P. Chehab, Incremental unknowns method and compact schemes, Math. Modelling Numer. Anal. 32(1) (1998) 51–83.

    Google Scholar 

  9. J.-P. Chehab and A. Miranville, Incremental unknowns method on nonuniform meshes, Math. Modelling Numer. Anal. 32(5) (1998) 539–577.

    Google Scholar 

  10. J.-P. Chehab and B. Costa, Multiparameter extensions of iterative processes, Rapport Technique du Laboratoire de Mathématiques d'Orsay, RT-02 (2002).

  11. J.-P. Chehab and B. Costa, Time explicit schemes for spatial finite differences, J. Sci. Comput. (2003) to appear.

  12. J.-P. Chehab and R. Temam, Incremental unknowns for solving nonlinear eigenvalue problems: New multiresolution methods, Numer. Methods Partial Differential Equations 11 (1995) 199–228.

    Google Scholar 

  13. M. Chen, A. Miranville and R. Temam, Incremental unknowns in finite differences in three space dimensions, Comput. Appl. Math. 14(3) (1995) 219–252.

    Google Scholar 

  14. M. Chen and R. Temam, Incremental unknowns for solving partial differential equations, Numer. Math. 59 (1991) 255–271.

    Google Scholar 

  15. B. Costa and L. Dettori, Fourier collocation splittings for partial differential equations, J. Comput. Phys. 20 (1999) 469–475.

    Google Scholar 

  16. B. Costa, L. Dettori, D. Gottlieb and R. Temam, Time marching techniques for the nonlinear Galerkin method, SIAM J. Sci. Comput. 23(1) (2001) 46–65.

    Google Scholar 

  17. A. Debussche, T. Dubois and R. Temam, The nonlinear Galerkin method: A multiscale method applied to the simulation of homogeneous turbulent flows, Theoret. Comput. Fluid Dyn. 7(4) (1995) 279–315.

    Google Scholar 

  18. O. Goubet, Nonlinear Galerkin methods using almost-orthogonal finite element bases, Nonlinear Anal. Theory Methods Appl. 20(3) (1993) 223–247.

    Google Scholar 

  19. M. Marion and R. Temam, Nonlinear Galerkin methods, SIAMJ. Numer. Anal. 26 (1989) 1139–1157.

    Google Scholar 

  20. M. Marion and R. Temam, Nonlinear Galerkin methods; The finite element case, Numer. Math. 57 (1990) 205–226.

    Google Scholar 

  21. B. Molina and M. Raydan, Spectral variants of Krylov subspace methods, Numer. Algorithms 29 (2002) 1–3, 197–208.

    Google Scholar 

  22. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. (Springer, Berlin, 1997).

    Google Scholar 

  23. R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal. 21 (1990) 154–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chehab, J., Costa, B. Multiparameter Schemes for Evolutionary Equations. Numerical Algorithms 34, 245–257 (2003). https://doi.org/10.1023/B:NUMA.0000005401.91113.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000005401.91113.1f

Navigation