Skip to main content
Log in

Computation of an Infinite Integral Using Romberg'S Method

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A numerical computation in crystallography involves the integral g(a)=∫0 +∞[(exp x+exp x)a−exp ax−exp ax] dx, 0<a<2. A first approximation value for g(5/3)=4.45 has been given. This result has been obtained by a classical method of numerical integration. It has been followed in an other paper by a second one 4.6262911 obtained from a theoretical formula which seems to lead to a more reliable result. The difficulty when one wants to use a numerical method is the choice of parameters on which the method depends, in this case, the size of the integration interval for instance and the number of steps in Romberg's method. We present a new approach of numerical integration which dynamically allows to take into account both the round-off error and the truncation error and leads to reliable results for every value of a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Herzberger, Introduction to Interval Analysis (Academic Press, New York, 1983).

    Google Scholar 

  2. F.L. Bauer, H. Rutishauser and E. Stiefel, New aspects in numerical quadrature, in: Proc. of Sympos. Appl. Math., Vol. XV (Amer. Math. Soc., Providence, RI, 1963) pp. 199-218.

    Google Scholar 

  3. R.L. Burden and J.D. Faires, Numerical Analysis, 7th ed. (Brooks-Cole, 2001).

  4. M. Charikhi, J.-M. Chesneaux, F. Jézéquel, F. Rico and L. Villain, A dynamical computation of a multiple integral involved in the neutron star theory, in: Proc. of SCAN'2002 Conference, Paris, France (2002).

  5. J.-M. Chesneaux, Study of the computing accuracy by using probabilistic approach, in: Contribution to Computer Arithmetic and Self-validating Numerical Methods, ed. C. Ullrich (IMACS, New Brunswick, NJ, 1990) pp. 19-30.

    Google Scholar 

  6. J.-M. Chesneaux, The equality relations in scientific computing, Numer. Algorithms 7 (1994) 129-143.

    Google Scholar 

  7. J.-M. Chesneaux, L'arithmétique stochastique et le logiciel CADNA, Habilitation à diriger des recherches, Université Pierre et Marie Curie, Paris (1995).

    Google Scholar 

  8. J.-M. Chesneaux and F. Jézéquel, Dynamical control of computations using the trapezoidal and Simpson's rules, J. Univ. Comput. Sci. 4(1) (1998) 2-10.

    Google Scholar 

  9. J.-M. Chesneaux and J. Vignes, Sur la robustesse de la méthode CESTAC, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988) 855-860.

    Google Scholar 

  10. J.-M. Chesneaux and J. Vignes, Les fondements de l'arithmétique stochastique, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 1435-1440.

    Google Scholar 

  11. W. Harrison, Total energies in the tight-binding theory, Phys. Rev. B 23 (1981) 5230-5245.

    Article  Google Scholar 

  12. [12]IEEE Standard 754-1985 for binary floating-point arithmetic, IEEE (1985). Reprinted in SIGPLAN 22(2) 9-25.

    Google Scholar 

  13. F. Jézéquel, Dynamical control of converging sequences computation, Appl. Numer. Math. 50(2) (2004) 147-164.

    Article  Google Scholar 

  14. F. Jézéquel, M. Charikhi and J.-M. Chesneaux, Dynamical control of computations of multiple integrals, in: Proc. of SCAN'2002 Conference, Paris, France (2002).

  15. U.W. Kulisch, Advanced Arithmetic for the Digital Computer (Springer, Wien, 2002).

    Google Scholar 

  16. [16]Problem 95-7, SIAM Rev. V 38(2) (1996) 324.

  17. R.T. Smith and R.B. Minton, Calculus, 2nd ed. (McGraw-Hill/Higher Education, 2002).

  18. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Texts in Applied Mathematics, Vol. 12 (Springer, 2002).

  19. J. Vignes, Zéro mathématique et zéro informatique, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986) 997-1000; also: La Vie des Sciences 4(1) (1987) 1-13.

    Google Scholar 

  20. J. Vignes, Estimation de la précision des résultats de logiciels numériques, La Vie des Sciences 7(2) (1990) 93-145.

    Google Scholar 

  21. J. Vignes, A stochastic arithmetic for reliable scientific computation, Math. Comput. Simulation 35 (1993) 233-261.

    Article  Google Scholar 

  22. J. Vignes and M. La Porte, Error analysis in computing, in: Information Processing, Vol. 74 (North-Holland, Amsterdam, 1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jézéquel, F., Chesneaux, JM. Computation of an Infinite Integral Using Romberg'S Method. Numerical Algorithms 36, 265–283 (2004). https://doi.org/10.1023/B:NUMA.0000040066.63826.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000040066.63826.46

Navigation