Skip to main content
Log in

Reliable Numerical Computation in Civil Engineering

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Civil engineering is a field – as are many other engineering sciences – where most of the methods used for solving optimization problems are based on experience and experiments, and models using local information, but drawn from global models. The present work outlines an interesting class of problems from this field, and initiates some possible ways to solve those problems utilizing the wide tool capabilities of interval arithmetic for error handling and interval branch-and-bound algorithms to solve the original or modified industrial models automating civil engineers' work. The investigations are in the first state but are promising both in a theoretical and in a practical sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Csallner, Global optimization in separation network synthesis, Hungarian J. Industrial Chem. 21 (1993) 303–308.

    Google Scholar 

  2. T. Csendes, Z.B. Zabinsky and B.P. Kristinsdottir, Constructing large feasible suboptimal intervals for constrained nonlinear optimization, Ann. Oper. Res. 58 (1995) 279–293.

    Google Scholar 

  3. T. Csendes, Optimization methods for process network synthesis–a case study, in: Global and Multiple Criteria Optimization and Information Systems Quality, eds. C. Carlsson and I. Eriksson (Abo Academy, Turku, 1998) pp. 113–132.

    Google Scholar 

  4. T. Gyengő, Vasbeton Szerkezetek Elmélete, Méretezése és Szerkezeti Kialakítása (in Hungarian: The Theory, Design and Structural Shaping of Reinforced Concrete Structures) (Műszaki Könyvkiadó, Budapest, 1960).

    Google Scholar 

  5. B.P. Kristinsdottir, Z.B. Zabinsky, T. Csendes and M.E. Tuttle, Methodologies for tolerance intervals, Interval Comput. 3 (1993) 133–147.

    Google Scholar 

  6. B.P. Kristinsdottir, Z.B. Zabinsky, M.E. Tuttle and T. Csendes: Incorporating manufacturing tolerances in optimal design of composite structures, Engrg. Optim. 26 (1996) 1–23.

    Google Scholar 

  7. MSZ 15001–1987, Alapozások tervezésének általános eljárásai (in Hungarian: General requirements for the design of foundations).

  8. MSZ 15002–1987, Építmények alapozásának erőtani tervezése. Általános méretezési előírások (in Hungarian: Mechanic design of the foundations of buildings. General sizing requirements).

  9. MSZ 15004–1989, Síkalapok határteherbírásának és süllyedésének meghatározása (in Hungarian: Determination of limit load bearing capacity and settlement of shallow foundations).

  10. MSZ ENV 1992–1–1/1999, Eurocode2: Betonszerkezetek tervezése, 1.1 rész: Általános és az épületekre vonatkozó szabályok (in Hungarian: Eurocode2: Design of concrete structures, part 1.1: General rules and rules for buildings).

  11. NAD MSZ ENV 1992–1–1, Magyar Nemzeti Alkalmazási Dokumentum az Eurocode2 szabványhoz. Betonszerkezetek tervezése (in Hungarian: Hungarian National Application Document for Eurocode2. Design of concrete structures).

  12. MSZ ENV 1997–1–1, Eurocode7. Geotechnikai tervezés (in Hungarian: Eurocode7: Geotechnical design).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csallner, A.E., Csendes, T. & Kocsis, A.B. Reliable Numerical Computation in Civil Engineering. Numerical Algorithms 37, 85–91 (2004). https://doi.org/10.1023/B:NUMA.0000049488.06517.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000049488.06517.bb

Navigation