Skip to main content
Log in

Generalized Subinterval Selection Criteria for Interval Global Optimization

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The convergence properties of interval global optimization algorithms are studied which select the next subinterval to be subdivided with the largest value of the indicator pf(f k ,X)=(f k \(\underline F \)(X))/(\(\overline F \)(X)−\(\underline F \)(X)). This time the more general case is investigated, when the global minimum value is unknown, and thus its estimation f k in the iteration k has an important role. A sharp necessary and sufficient condition is given on the f k values approximating the global minimum value that ensure convergence of the optimization algorithm. The new theoretical result enables new, more efficient implementations that utilize the advantages of the pf * based interval selection rule, even for the more general case when no reliable estimation of the global minimum value is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.G. Casado and I. García, New load balancing criterion for parallel interval global optimization algorithm, in: Proc. of the 16th IASTED Internat. Conf., Garmisch-Partenkirchen, Germany, 1998, pp. 321–323.

    Google Scholar 

  2. L.G. Casado, I. García and T. Csendes, A new multisection technique in interval methods for global optimization, Computing 65 (2000) 263–269.

    Google Scholar 

  3. L.G. Casado, I. García and T. Csendes, A heuristic rejection criterion in interval global optimization BIT 41 (2001) 683–692.

    Google Scholar 

  4. L.G. Casado, I. García, T. Csendes and V.G. Ruiz, Heuristic rejection in interval global optimization, J. Optim. Theory Appl. 118 (2003) 27–43.

    Google Scholar 

  5. T. Csendes, Convergence properties of interval global optimization algorithms with a new class of interval selection criteria, J. Global Optim. 19 (2001) 307–327.

    Google Scholar 

  6. T. Csendes, Numerical experiences with a new generalized subinterval selection criterion for interval global optimization, Reliable Comput. 9 (2003) 109–125.

    Google Scholar 

  7. T. Csendes and D. Ratz, Subdivision direction selection in interval methods for global optimization, SIAM J. Numer. Anal. 34 (1997) 922–938.

    Google Scholar 

  8. R. Hammer, M. Hocks, U. Kulisch and D. Ratz, C++ Toolbox for Verified Computing (Springer, Berlin, 1995).

    Google Scholar 

  9. E. Hansen, Global Optimization Using Interval Analysis (Marcel Decker, New York, 1992).

    Google Scholar 

  10. R. Horst and P.M. Pardalos, eds., Handbook of Global Optimization (Kluwer, Dordrecht, 1995).

    Google Scholar 

  11. R.B. Kearfott, Rigorous Global Search: Continuous Problems (Kluwer, Dordrecht, 1996).

    Google Scholar 

  12. O. Knüppel, BIAS — Basic Interval Arithmetic Subroutines, Technical Report 93.3, University of Hamburg (1993).

  13. M.Cs. Markót, T. Csendes and A.E. Csallner, Multisection in interval branch-and-bound methods for global optimization II. Numerical tests, J. Global Optim. 16 (2000) 219–228.

    Google Scholar 

  14. R.E. Moore and H. Ratschek, Inclusion functions and global optimization II, Math. Programming 41 (1988) 341–356.

    Google Scholar 

  15. H. Ratschek and J. Rokne, New Computer Methods for Global Optimization (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  16. D. Ratz and T. Csendes, On the selection of subdivision directions in interval branch-and-bound methods for global optimization, J. Global Optim. 7 (1995) 183–207.

    Google Scholar 

  17. S. Skelboe, Computation of rational functions, BIT 14 (1974) 87–95.

    Google Scholar 

  18. R. Stateva and S. Tsvetkov, A diverse approach for the solution of the isothermal multiphase flash problem, application to vapor-liquid-liquid systems, Canadian J. Chem. Engrg. 72 (1994) 722–734.

    Google Scholar 

  19. A. Törn and A. Žilinskas, Global Optimization (Springer, Berlin, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csendes, T. Generalized Subinterval Selection Criteria for Interval Global Optimization. Numerical Algorithms 37, 93–100 (2004). https://doi.org/10.1023/B:NUMA.0000049489.44154.02

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000049489.44154.02

Navigation