Skip to main content
Log in

Slope Intervals, Generalized Gradients, Semigradients, Slant Derivatives, and Csets

  • Published:
Reliable Computing

Abstract

Many practical optimization problems are nonsmooth, and derivative-type methods cannot be applied. To overcome this difficulty, there are different concepts to replace the derivative of a function f : \(\mathbb{R}^n \to \mathbb{R}\): interval slopes, semigradients, generalized gradients, and slant derivatives are some examples. These approaches generalize the success of convex analysis, and are effective in optimization. However, with the exception of interval slopes, it is not clear how to automatically compute these; having a general analogue to the chain rule, interval slopes can be computed with automatic differentiation techniques. In this paper we study the relationships among these approaches for nonsmooth Lipschitz optimization problems in finite dimensional Euclidean spaces. Inclusion theorems concerning the equivalence of these concepts when there exist one sided derivatives in one dimension and in multidimensional cases are proved separately. Valid enclosures are produced. Under containment set (cset) theory, for instance, the cset of the gradient of a locally Lipschitz function f near x is included in its generalized gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J. P.: Lipschitz Behavior of the Solution to Convex Optimization Problems, Mat. Oper. Res. 9 (1984), pp. 87–111.

    Google Scholar 

  2. Chen, X., Nashed, Z., and Qi, L.: Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations, SIAM, J. Numer. Anal. 38(4) (2000), pp. 1200–1216.

    Google Scholar 

  3. Clarke, F. H.: Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, SIAM, Philadelphia, 1990.

    Google Scholar 

  4. Dem'janov, V. F. and Rubinov, A. M.: On Quasidifferentiable Functionals, Math. Dokl. 21 (1980), pp. 14–17.

    Google Scholar 

  5. Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.

    Google Scholar 

  6. Hansen, E. R.: Global Optimization Using Interval Analysis: The Multidimensional Case, Numer. Math. 34(3) (1980), pp. 247–270.

    Google Scholar 

  7. Hansen, E. R. and Sengupta, S.: Global Constrained Optimization Using Interval Analysis, in: Nickel, K. (ed.), Interval Mathematics 1980, Academic Press, New York, 1980.

    Google Scholar 

  8. Janin, R. and Gauvin, J.: Lipschitz-Type Stability in Nonsmooth Convex Programs, SIAM J. Control Optim. 38(1) (1999), pp. 124–137.

    Google Scholar 

  9. Kearfott, R. B.: Interval Extensions of Non-Smooth Functions for Global Optimization and Nonlinear Systems Solvers, Computing 57 (1996), pp. 149–162.

    Google Scholar 

  10. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Netherlands, 1996.

    Google Scholar 

  11. Kearfott, R. B.: Treating Non-Smooth Functions as Smooth Functions in Global Optimization and Nonlinear Systems Solvers, Scientific Computing and Validated Numerics, Alefeld, G., Frommer, A., and Lang B., Mathematical Research 90 (1996), pp. 160–172.

  12. Kiwiel, K. C.: Methods of Descent in Nonsmooth Optimization, Springer Verlag, Berlin, 1985.

    Google Scholar 

  13. Krawczyk, R.: Intervallsteigungen für rationale Funktionen und zugeordnete zentrishe Formen, Freiburger Intervall-Berichte 83(2) (1983), pp. 1–30.

    Google Scholar 

  14. Krawczyk, R. and Neumaier, A.: Interval Slopes for Rational Functions and Associated Centered Forms, SIAM J. Numer. Anal. 22(3) (1985), pp. 604–616.

    Google Scholar 

  15. Moore, R. E.: Interval Arithmetic and Automatic Error Analysis in Digital Computing, Ph.D. dissertation, UMI, Stanford University, 1962.

  16. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    Google Scholar 

  17. Moreau Luc and Aeyels Dirk.: Optimization of Discontinuous Functions: A Generalized Theory of Differentiation, SIAM Journal of Optimization 11(1) (2000), pp. 53–69.

    Google Scholar 

  18. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  19. Qi, L. and Sun, J.: A Nonsmooth Version of Newton's Method, Math. Programming 58 (1993), pp. 353–367.

    Google Scholar 

  20. Ratschek, H.: Some Recent Aspects of Interval Algorithms for Global Optimizations, Reliability in Computing “The Role of Interval Methods in Scientific Computing,” Academic Press, 1988, pp. 325–339.

  21. Ratschek, H. and Görges, C.: Global Interval Methods for Local Nonsmooth Optimization, Journal of Global Optimization 14 (1999), pp. 157–179.

    Google Scholar 

  22. Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions, Horwood, Chichester, 1984.

    Google Scholar 

  23. Ratschek, H. and Rokne, J.: Interval Tools for Global Optimization, Computers Math. Applic. 1 (1990), pp. 1–11.

    Google Scholar 

  24. Ratz, D.: Automatic Slope Computation and Its Application in Nonsmooth Global Optimization, Shaker Verlag, Aachen, 1998.

    Google Scholar 

  25. Ratz, D.: Automatische Ergebnisverifikation bei globalen Optimierungsproblemen, Ph.D. dissertation, Universität Karlsruhe, 1992.

  26. Rockafellar, R. T.: Directionally Lipschitzian Functions and Subdifferential Calculus, Proc. London Math. Soc. 39 (1979), pp. 331–355.

    Google Scholar 

  27. Rockafellar, R. T.: Equivalent Subgradient Versions of Hamiltonian and Euler—Lagrange Equations in Variational Analysis, SIAM J. Control and Optimization 34(4) (1996), pp. 1300–1314.

    Google Scholar 

  28. Royden, H. L.: Real Analysis, Second Edition, The Macmillan Company, New York, 1968.

    Google Scholar 

  29. Shapiro, A.: On Concepts of Directional Differentiability, J. Optim. Theory Appl. 66 (1990), pp. 477–487.

    Google Scholar 

  30. Shen, Z., Neumaier, A., and Eiermann, M. C.: Solving Minimax Problems by Interval Methods, BIT 30 (1990), pp. 742–751.

    Google Scholar 

  31. Sheng, Z. and Wolfe M. A.: An Interval Algorithm for Nondifferentiable Global Optimization, Applied Mathematics and Computation 63 (1994), pp. 101–122.

    Google Scholar 

  32. Shor, N. Z.: Minimization Methods for Nondifferentiable Functions, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  33. Simons S.: The Least Slope of a Convex Function and the Maximal Monotonicity of Its Subdifferential, J. of Optimation Theory and Applications 71(1) (1991), pp. 127–126.

    Google Scholar 

  34. Sonnenschein, C.: Zur Minimierung nichtdifferenzierbarer programmierbarer Funktionen, Ph.D. dissertation, 1999 (in German).

  35. Treiman, J. S.: Lagrange Multipliers for Nonconvex Generalized Gradients with Equality, Inequality, and Set Constraints, SIAM J. Control Optim. 37(5) (1999), pp. 1313–1329.

    Google Scholar 

  36. Walster, G.W., Hansen, E. R., and Pryce, J. D.: Practical, Exception-Free Interval Arithmetic on the Extended Reals, SIAM Journal of Scientific Computing (2001), submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, H., Kearfott, R.B. Slope Intervals, Generalized Gradients, Semigradients, Slant Derivatives, and Csets. Reliable Computing 10, 163–193 (2004). https://doi.org/10.1023/B:REOM.0000032107.85627.45

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REOM.0000032107.85627.45

Keywords

Navigation