Skip to main content
Log in

An Institution-independent Proof of Craig Interpolation Theorem

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We formulate a general institution-independent (i.e. independent of the details of the actual logic formalised as institution) version of the Craig Interpolation Theorem and prove it in dependence of Birkhoff-style axiomatizability properties of the actual logic.

We formalise Birkhoff-style axiomatizability within the general abstract model theoretic framework of institution theory by the novel concept of Birkhoff institution.

Our proof destills a set of conditons behind the Craig Interpolation Property, which are easy to establish in the applications. Together with the generality of our approach, this leads to a wide range of applications for our result, including conventional and non-conventional logics (many of them from algebraic specification theory), such as general algebra, classical model theory, partial algebra, rewriting logic, membership algebra, etc. all of them in various versions and with various types of sentences (including infinitary ones). In dependence of axiomatizability properties many other applications are expected for various institutions or logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréka, H., and I. Németi, ‘Łoś Lemma Holds in Every Category’, Studia Scientiarum Mathematicarum Hungarica 13:361-376, 1978.

    Google Scholar 

  2. Andréka, H., and I. Németi, ‘A General Axiomatizability Theorem Formulated in Terms of Cone-Injective Subcategories’, in B. Csakany, E. Fried, and E. Schmidt (eds.), Universal Algebra, North-Holland, Colloquia Mathematics Societas János Bolyai, 29, 1981, pp. 13-35.

  3. Andréka, H., and I. Németi, ‘Generalization of the concept of variety and quasivariety to partial algebras through category theory’, Dissertationes Mathematicae CCIV, 1983.

  4. Bergstra, J., J. Heering, and P. Klint, ‘Module Algebra’, Journal of the Association for Computing Machinery 37(2):335-372, 1990.

    Google Scholar 

  5. Borzyszkowski, T., ‘Generalized Interpolation in CASL’, Information Processing Letters 76:19-24, 2001.

    Google Scholar 

  6. Borzyszkowski, T., ‘Logical systems for structured specifications’, Theoretical Computer Science 286:197-245, 2002

    Google Scholar 

  7. Chang, C.C., and H.J. Keisler, Model Theory, North Holland, Amsterdam, 1973.

    Google Scholar 

  8. Cengarle, M.-V., ‘Formal specifications with higher-order parameterization’, Ph.D. thesis, Ludwig-Maximilians-Universitat, Muenchen, 1994.

    Google Scholar 

  9. Craig, W. ‘Linear reasoning: a new form of Herbrand-Gentzen theorem’, Journal of Symbolic Logic 22:250-268, 1957.

    Google Scholar 

  10. Diaconescu, R., ‘Extra Theory Morphisms for Institutions: logical semantics for multi-paradigm languages’, Applied Categorical Structures 6(4):427-453, 1998.

    Google Scholar 

  11. Diaconescu, R., ‘Elementary diagrams in institutions’, J. Logic and Computation to appear, 2004.

  12. Diaconescu, R., ‘Grothendieck Institutions’, Applied Categorical Structures 10(4):383-402, 2002.

    Google Scholar 

  13. Diaconescu, R., ‘Institution-independent Ultraproducts’, Fundamenta Informaticæ 55(3–4):321-348, 2003.

    Google Scholar 

  14. Diaconescu, R., and K. Futatsugi, ‘Logical Foundations of CafeOBJ’, Theoretical Computer Science 285:289-318, 2002.

    Google Scholar 

  15. Diaconescu, R., J. Goguen, and P. Stefaneas, ‘Logical Support for Modularisation’, in G. Huet and G. Plotkin (eds.), Logical Environments, Cambridge, 1993, pp. 83-130.

  16. Dimitrakos, T., and T. Maibaum, ‘On a Generalized Modularization Theorem’, Information Processing Letters 74:65-71, 2000.

    Google Scholar 

  17. Goguen, J., and R. Burstall, ‘Institutions: Abstract Model Theory for Specification and Programming’, Journal of the Association for Computing Machinery 39(1):95-146, 1992.

    Google Scholar 

  18. Grätzer, G., Universal Algebra, Springer, 1979.

  19. Hodges, W., Model Theory, Cambridge University Press, 1993.

  20. Lamo, Y., and M. Walicki, ‘The general logic of Multialgebras’, Workshop on Algebraic Development Techniques 2002.

  21. MacLane, S., Categories for the Working Mathematician, Springer, second edition, 1998.

  22. Matthiessen, G., ‘Regular and strongly finitary structures over strongly algebroidal categories’, Canad. J. Math. 30:250-261, 1978.

    Google Scholar 

  23. Meseguer, J., ‘Conditional rewriting logic as a unified model of concurrency’, Theoretical Computer Science 96(1):73-155, 1992.

    Google Scholar 

  24. Meseguer, J., ‘A Logical Theory of Concurrent Objects and Its Realization in the Maude Language’, in G. Agha, P. Wegner, and A. Yonezawa (eds.), Research Directions in Concurrent Object-Oriented Programming, MIT Press, 1993.

  25. Meseguer, J., ‘Membership Algebra as a Logical Framework for Equational Specification’, in F. Parisi-Pressice (ed.), Proc. WADT'97, 1998, pp. 18-61.

  26. Mossakowski, T., ‘Relating CASL with Other Specification Languages: the Institution Level’, Theoretical Computer Science 286:367-475, 2002.

    Google Scholar 

  27. Roşu, G., and J. Goguen, ‘On Equational Craig Interpolation’, Universal Computer Science 5(8):482-493, 1999.

    Google Scholar 

  28. Rodenburg, P.-H., ‘A Simple Algebraic Proof of the Equational Interpolation Theorem’, Algebra Universalis 28:48-51, 1991.

    Google Scholar 

  29. Salibra, A., and G. Scollo, ‘Interpolation and compactness in categories of pre-institutions’, Mathematical Structures in Computer Science 6:261-286, 1996.

    Google Scholar 

  30. Tarlecki, A., ‘Bits and Pieces of the Theory of Institutions’, in D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard (eds.), Proceedings, Summer Workshop on Category Theory and Computer Programming, Springer, Lecture Notes in Computer Science, Volume 240, 1986, pp. 334-360.

  31. Tarlecki, A., ‘On the Existence of Free Models in Abstract Algebraic Institutions’, Theoretical Computer Science 37:269-304, 1986.

    Google Scholar 

  32. Tarlecki, A., ‘Quasi-Varieties in Abstract Algebraic Institutions’, Journal of Computer and System Sciences 33(3):333-360, 1986.

    Google Scholar 

  33. Tarlecki, A., ‘Towards Heterogeneous Specifications’, in D. Gabbay and M. van Rijke (eds.), Proceedings, International Conference on Frontiers of Combining Systems (FroCoS'98), 1998, pp. 337-360.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaconescu, R. An Institution-independent Proof of Craig Interpolation Theorem. Studia Logica 77, 59–79 (2004). https://doi.org/10.1023/B:STUD.0000034185.62660.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUD.0000034185.62660.d6

Navigation