Skip to main content
Log in

Parallel Implementation of a Least-Squares Spectral Element Solver for Incompressible Flow Problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Least-squares spectral element methods (LSQSEM) are based on two important and successful numerical methods: spectral/hp element methods and least-squares finite element methods. Least-squares methods lead to symmetric and positive definite algebraic systems which circumvent the Ladyzhenskaya–Babuška–Brezzi (LBB) stability condition and consequently allow the use of equal order interpolation polynomials for all variables. In this paper, we present results obtained with a parallel implementation of the least-squares spectral element solver on a distributed memory machine (Cray T3E) and on a virtual shared memory machine (SGI Origin 3800).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bernardi and Y. Maday. Approximations spectrale de problémes aux limites élliptiques, Mathématiques et Applications, Vol. 10, Springer-Verlag, Paris, France, 1992.

    Google Scholar 

  2. P. B. Bochev and M. D. Gunzburger. Finite element methods of least-squares type. SIAM Rev., 40(4):789–837, 1998.

    Google Scholar 

  3. G. F. Carey and B.-N. Jiang. Least-squares finite element method and preconditioned conjugate gradient solution. Int. J. Numer. Meth. Eng., 24:1283–1296, 1987.

    Google Scholar 

  4. G. F. Carey and B.-N. Jiang. Element-by-element linear and nonlinear solution schemes. Commun. in Appl. Numer. Meth., 2:145–153, 1986.

    Google Scholar 

  5. G. F. Carey, Y. Shen, and R. T. Mclay. Parallel conjugate gradient performance for least-squares finite elements and transport problems. Int. J. Numer. Meth. Fluids, 28:1421–1440, 1998.

    Google Scholar 

  6. W. Couzy. Spectral element discretization of the unsteady Navier-Stokes equations and its iterative solution on parallel computers. Ph.D. thesis, É cole Polytechnique Fédérale de Lausanne, 1995.

  7. J. M. Deang and M. D. Gunzburger. Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput., 20(3):878–906, 1998.

    Google Scholar 

  8. M. I. Gerritsma and T. N. Phillips. Discontinuous spectral element approximations for the velocitypressure-stress formulation of the Stokes problem. Int. J. Numer. Meth. Eng., 43:1401–1419, 1998.

    Google Scholar 

  9. R. D. Henderson. Adaptive spectral element methods for turbulence and transition. In J. Barth and H. Deconinck, eds., Higher order discretization methods in computational fluid dynamics, pp. 225–309. Springer-Verlag, New York/Berlin/Heidelberg/Tokyo, 1999.

    Google Scholar 

  10. B.-N. Jiang. A least-squares finite element method for incompressible Navier–Stokes problems. Int. J. Numer. Meth. Fluids, 14:843–859, 1992.

    Google Scholar 

  11. B.-N. Jiang. On the least-squares method. Comput. Methods Appl. Mech. Eng., 152:239–257, 1998.

    Google Scholar 

  12. B.-N. Jiang and C. L. Chang. Least-squares finite elements for the Stokes problem. Comput. Methods Appl. Mech. Eng., 78:297–311, 1990.

    Google Scholar 

  13. B.-N. Jiang, T. L. Lin, and L. A. Povinelli. Large-scale computation of incompressible viscous flow by least-squares finite element method. Comput. Methods Appl. Mech. Eng., 114:213–231, 1994.

    Google Scholar 

  14. B.-N. Jiang and L. Povinelli. Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Eng., 81:13–37, 1990.

    Google Scholar 

  15. G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for CFD, Oxford University Press, 1999.

  16. Y. Maday and A. T. Patera. Spectral element methods for the Navier–Stokes equations. In A. K. Noor and J. T. Oden, eds., State-of-the-Art surveys in Computational Mechanics, ASME, 1989.

  17. L. F. Pavarino and O. B. Widlund. Iterative substructuring methods for spectral element discretizations of elliptic systems. I: Compressible linear elasiticity. SIAM J. Numer. Anal., 37(2):353–374, 1999.

    Google Scholar 

  18. L. F. Pavarino and O. B. Widlund. Iterative substructuring methods for spectral element discretizations of elliptic systems. II: Mixed methods for linear elasiticity and stokes flow. SIAM J. Numer. Anal., 37(2):375–402, 1999.

    Google Scholar 

  19. M. M. J. Proot and M. I. Gerritsma. A least-squares spectral element formulation for the Stokes problem. J. Sci. Comp., 17(1–3):311–322, 2002.

    Google Scholar 

  20. M. M. J. Proot and M. I. Gerritsma. Least-squares spectral elements applied to the Stokes problem. J. Comput. Phys., 181, 454–477, 2002.

    Google Scholar 

  21. A. Quateroni and A. Valli. Domain Decomposition Methods for Partial Differential equations, Oxford University Press, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nool, M., Proot, M.M.J. Parallel Implementation of a Least-Squares Spectral Element Solver for Incompressible Flow Problems. The Journal of Supercomputing 28, 135–148 (2004). https://doi.org/10.1023/B:SUPE.0000020174.81894.4c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SUPE.0000020174.81894.4c

Navigation