Skip to main content
Log in

Towards a VLSI Architecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders

  • Published:
Journal of VLSI signal processing systems for signal, image and video technology Aims and scope Submit manuscript

Abstract

The Koetter-Vardy algorithm is an algebraic soft-decision decoder for Reed-Solomon codes which is based on the Guruswami-Sudan list decoder. There are three main steps: (1) multiplicity calculation, (2) interpolation and (3) root finding. The Koetter-Vardy algorithm seems challenging to implement due to the high cost of interpolation. Motivated by a VLSI implementation viewpoint we propose an improvement to the interpolation algorithm that uses a transformation of the received word to reduce the number of iterations. We show how to reduce the memory requirements and give an efficient VLSI implementation for the Hasse derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Wicker and V.K. Bhargava, “An Introduction to Reed-Solomon Codes,” in Reed-Solomon Codes and Their ApplicationsS.B. Wicker and V.K. Bhargava, (Eds.), New York, New York: IEEE Press, 1994, ch. 1, pp. 1–16.

    Google Scholar 

  2. M. Sudan, “Decoding of Reed-Solomon Codes Beyond the Error Correction Bound,” Journal of Complexitt,vol. 13, no. 1, 1997, pp. 180–193.

    Article  MathSciNet  Google Scholar 

  3. V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic-Geometry Codes,” IEEE Transactions on Information Theory,vol. 45, 1999, pp. 1757–1767.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Brinton Cooper III, “Soft Decision Decoding of Reed-Solomon Codes,” Reed-Solomon Codes and Their Applications, New York, New York: IEEE Press, 1994, ch. 6, pp. 108–124.

    Google Scholar 

  5. R. Kotter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” in Proceedings of the IEEE International Symposium on Information Theory, 2000, p. 61.

  6. R. Koetter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” IEEE Transactions on Information Theory,vol. 49, November 2003, pp. 2809–2825.

    Article  MathSciNet  MATH  Google Scholar 

  7. W.J. Gross, F.R. Kschischang, R. Koetter, and P. Gulak, “Simulation Results for Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” in Proceedings of the 21'st Biennial Symposium on Communications, Queen's University, Kingston, Ontario, Canada, June 2-5 2002, pp. 356–360.

  8. W.J. Gross, F.R. Kschischang, R. Koetter, and P. Gulak, “Applications of Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” Submitted to IEEE Transactions on Communications, 2003.

  9. I.S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,” SIAM Journal of Applied Mathematics,vol. 8, 1960, pp. 300–304.

    Article  MathSciNet  Google Scholar 

  10. H. Hasse, “Theorie der höheren differentiale in einem algebraischen funktionenkörper mit vollkommenem konstantenkörper. bei beliebiger charakteristik,” J. Reine. Ang. Math.,vol. 175, 1936, pp. 50–54.

    MathSciNet  Google Scholar 

  11. R.M. Roth and G. Ruckenstein, “Efficient Decoding of Reed-Solomon codes Beyond Half the Minimum Distance,” IEEE Transactions on Information Theory,vol. 46, Jan. 2000, pp. 246–257.

    Article  MathSciNet  MATH  Google Scholar 

  12. H.M. Möller and B. Buchberger, “The Construction of Multivariate Polynomials with Preassigned Zeros,” in EUROCAM' 82, European Computer Algebra Conference, J.Calmet, (Ed.), vol. 144 of Lecture Notes In Computer Science, Marseille, France, April 1982, pp. 24–31.

  13. J. Abbott, A. Bigatti, M. Kreuzer, and L. Robbiano, “Computing Ideals of Points,” Journal of Symbolic Computation,vol. 30, no. 4, 2000, pp. 341–356.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Feng and K. Tzeng, “A Generalization of the Berlekamp-Massey Algorithm for Multisequence Shift-Register Synthesis with Applications to Decoding Cyclic Codes,” IEEE Transactions on Information Theory,vol. 37, Sept. 1991, pp. 1274–1287.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Kötter, “On Algebraic Decoding of Algebraic-Geometric and Cyclic Codes,” PhD Thesis, Lynköping University, 1996.

  16. R.R. Nielsen, “Decoding AG-Codes Beyond Half the Minimum Distance,” Master's Thesis, Technical University of Denmark, Aug. 31 1998.

  17. W.J. Gross, F.R. Kschischang, R. Koetter, and P. Gulak, “AVLSI Architecture for Interpolation in Soft-Decision List Decoding of Reed-Solomon Codes,” in Proceedings of the 2002 IEEE Workshop on Signal Processing Systems (SIPS'02), San Diego, CA, Oct. 16-18 2002, pp. 39–44.

  18. R. Koetter, J. Ma, A. Vardy, and A. Ahmed, “Efficient Interpolation and Factorization in Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” in Proceedings of the IEEE International Symposium on Information Theory, June 29-July 4, 2003, p. 365.

  19. R. Koetter and A. Vardy, “A Complexity Reducing Transfor-mation in Algebraic List Decoding of Reed-Solomon Codes,” in Proceedings of ITW2003,Paris, France, March 31-April 4, 2003.

  20. L.R. Welch and E.R. Berlekamp, “Error Correction for Algebraic Block Codes,” US Patent 4,633,470, 1986.

  21. R.E. Peile, “On the Performance and Complexity of a Generalized Mimimum Distance Reed-Solomon Decoding Algorithm,” International Journal of Satellite Communications,vol. 12, 1994, pp. 333–359.

    Article  Google Scholar 

  22. D. Dabiri and I.F. Blake, “Fast Parallel Algorithms for Decoding Reed-Solomon Codes,” in Proceedings of the 1994 IEEE International Symposium on Information Theory, June 27, 1994, p. 97.

  23. D. Dabiri and I.F. Blake, “Fast Parallel Algorithms for Decoding Reed-Solomon Codes Based on Remainder Polynomials,” IEEE Transactions on Information Theory,vol. 41, July 1995, pp. 873–885.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Berlekamp, “Bounded Distance +1 Soft-Decision Reed-Solomon Decoding,” IEEE Transactions on Information Theory, vol. 42, 1996, pp. 704–720.

    Article  MATH  Google Scholar 

  25. S.B. Wicker, Error Control Systems for Digital Communication and Storage, Upper Saddle River, New Jersey: Prentice Hall, 1995.

    MATH  Google Scholar 

  26. B. Kamali and P. Morris, “Application of Erasure-Only Decoded Reed-Solomon Codes in Cell Recovery for Congested ATMNet-works,” in IEEE Vehicular Technology Conference,vol. 2, 24-28 Sept. 2000, pp. 983–986.

    Google Scholar 

  27. A. Ahmed, R. Koetter, and N.R. Shanbhag, “VLSI Architectures for Soft-Decision Decoding of Reed-Solomon Codes,” Submitted to IEEE Transactions on VLSI Systems, Feb. 2003.

  28. H. Xia, H. Song, and J.R. Cruz, “Retry ModeSoft Reed-Solomon Decoding,” IEEE Transactions on Magnetics,vol. 38, 2002, pp. 2325–2327.

    Article  Google Scholar 

  29. V.C. da Rocha Jr., “Digital Sequences and the Hasse Derivative,” in Communications Coding and Signal Processing, B.Honary, M. Darnell, and P. Farrell (Eds.), Communication Theory and Applications, John Wiley and Sons Inc., 1997, vol. 3, pp. 256–268.

  30. D.E. Knuth, The Art of Computer Programming, Seminumerical Algorithms, Addison-Wesley, 1969, vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, W.J., Kschischang, F.R., Koetter, R. et al. Towards a VLSI Architecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 39, 93–111 (2005). https://doi.org/10.1023/B:VLSI.0000047274.68702.8d

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VLSI.0000047274.68702.8d

Navigation