Skip to main content
Log in

Gaussian mapping of chemical fragments in ligand binding sites

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians with the positions of aromatic sites found in experimental protein–ligand complexes. For a set of 53 complexes, good correspondence is found in general. At a 95% significance level, ∼65% of the predicted interaction points have an aromatic binding site within 1.5 Å. We then studied the utility of these points in docking using the program DOCK. Short docking times, with an average of ∼0.18 s per conformer, are obtained, while retaining, both for rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4–5-fold speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol.

Abbreviations: RMSD – root mean square deviation; ASA – Atomic Shell Approximation; LSF – Least-Squares Fitting; 3D – three-dimensional; VDW – Van der Waals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brooijmans, N. and Kuntz, I.D., Annu. Rev. Biophys. Biomol. Struct., 28 (2003) 28.

    Google Scholar 

  2. Wade, R.C. and Goodford, P.J., J.Med. Chem., 36 (1993) 148.

    Article  PubMed  Google Scholar 

  3. Wade, R.C., Clark, K.J. and Goodford, P.J., J.Med. Chem., 36 (1993) 140.

    Article  PubMed  Google Scholar 

  4. Boobbyer, D.N., Goodford, P.J., Mcwhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Article  PubMed  Google Scholar 

  5. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Article  PubMed  Google Scholar 

  6. Goodford, P.J., J. Med. Chem., 27 (1984) 558.

    Article  PubMed  Google Scholar 

  7. Miranker, A. and Karplus, M., Proteins, 23 (1995) 472.

    Article  Google Scholar 

  8. Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142.

    Article  PubMed  Google Scholar 

  9. Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.

    Article  Google Scholar 

  10. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comp. Chem., 19 (1998) 1639.

    Article  Google Scholar 

  11. Laskowski, R.A., Thornton, J.M., Humblet, C. and Singh, J., J. Mol. Biol., 259 (1996) 175.

    Article  PubMed  Google Scholar 

  12. Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V. and Willett, P., J. Mol. Biol., 307 (2001) 841.

    Article  PubMed  Google Scholar 

  13. Gohlke, H., Hendlich, M. and Klebe, G., J. Mol. Biol., 295 (2000) 337.

    Article  PubMed  Google Scholar 

  14. Connolly, M.L., Science, 221 (1983) 709.

    PubMed  Google Scholar 

  15. Connolly, M.L., J. Mol. Graph., 11 (1993) 139.

    Article  PubMed  Google Scholar 

  16. Ewing, T.J., Makino, S., Skillman, A.G. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 15 (2001) 411.

    Article  Google Scholar 

  17. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Article  PubMed  Google Scholar 

  18. Meng, E.C., Gschwend, D.A., Blaney, J.M. and Kuntz, I.D., Proteins, 17 (1993) 266.

    Article  PubMed  Google Scholar 

  19. Zavodszky, M.I.S.P.C., Korde, R. and Kuhn, L.A., J. Comput.-Aided Mol. Design, 16 (2002) 883.

    Article  Google Scholar 

  20. Joseph-Mccarthy, D. and Alvarez, J.C., Proteins, 51 (2003) 189.

    Article  PubMed  Google Scholar 

  21. Nissink, J.W.M., Verdonk, M.L. and Klebe, G., J. Comput.-Aided Mol. Design, 14 (2000) 787.

    Article  Google Scholar 

  22. Bruno, I.J., Cole, J.C., Lommerse, J.P., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput.-Aided Mol. Design, 11 (1997) 525.

    Article  Google Scholar 

  23. Rantanen, V.V., Gyllenberg, M., Koski, T. and Johnson, M.S., J. Comput.-Aided Mol. Design, 17 (2003) 435.

    Article  Google Scholar 

  24. Bitetti-putzer, R., Joseph-Mccarthy, D., Hogle, J.M. and Karplus, M., J. Comput.-Aided Mol. Design, 15 (2001) 935.

    Article  Google Scholar 

  25. Girones, X., Amat, L. and Carbo-dorca, R., J. Mol. Graph. Model, 16 (1998) 190.

    PubMed  Google Scholar 

  26. Girones, X., Carbo-dorca, R. and Mezey, P.G., J. Mol. Graph. Model, 19 (2001) 343.

    Article  PubMed  Google Scholar 

  27. Perez, C. and Ortiz, A.R., J. Med. Chem., 44 (2001) 3768.

    Article  PubMed  Google Scholar 

  28. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Article  Google Scholar 

  29. Lattman, E.E., Optimal sampling of the rotation function. In: The Molecular Replacement Method, Rossmann, M.G. (ed.), Gordon and Breach, Science Publishers Inc., New York, 1972, pp. 179–185.

    Google Scholar 

  30. Nelder, J.A. and Mead, R., Comput. J., 7 (1965) 308.

    Google Scholar 

  31. Davis, G., Mallat, S. and Avellaneda, M., Constr. Approx., 13 (1997) 57.

    Article  Google Scholar 

  32. Davis, G., Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, 1994.

  33. Besalu, E., Girones, X., Amat, L. and Carbo-dorca, R., Acc. Chem. Res., 35 (2002) 289.

    Article  PubMed  Google Scholar 

  34. Rarey, M., Kramer, B. and Lengauer, T., Bioinformatics, 15 (1999) 243.

    Article  PubMed  Google Scholar 

  35. Murcia, M. and Ortiz, A.R., J. Med. Chem., 47 (2004) 805.

    Article  PubMed  Google Scholar 

  36. Stewart, J.J., J. Comput.-Aided Mol. Design, 4 (1990) 1–105.

    Article  Google Scholar 

  37. Dewar, M.J., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Article  Google Scholar 

  38. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., Eur. J. Biochem., 80 (1977) 319.

    Article  PubMed  Google Scholar 

  39. Bursulaya, B.D., Totrov, M., Abagyan, R. and Brooks III, C.L., J. Comput.-Aided Mol. Design, 17 (2003) 755.

    Article  Google Scholar 

  40. Joseph-mccarthy, D., Thomas, B.E.t., Belmarsh, M., Moustakas, D. and Alvarez, J.C., Proteins, 51 (2003) 172.

    Article  PubMed  Google Scholar 

  41. Bashford, D. and Case, D.A., Annu. Rev. Phys. Chem., 51 (2000) 129.

    Article  PubMed  Google Scholar 

  42. Wriggers, W., Milligan, R.A. and Mccammon, J.A., J. Struct. Biol., 125 (1999) 185.

    Article  PubMed  Google Scholar 

  43. Wriggers, W., Milligan, R.A., Schulten, K. and Mccammon, J.A., J. Mol. Biol., 284 (1998) 1247.

    Article  PubMed  Google Scholar 

  44. De-alarcon, P.A., Pascual-montano, A., Gupta, A. and Carazo, J.M., Biophys. J., 83 (2002) 619.

    PubMed  Google Scholar 

  45. Dewitte, R.S. and Shakhnovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.

    Article  Google Scholar 

  46. Gohlke, H. and Klebe, G., Curr. Opin. Struct. Biol., 11 (2001) 231.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Murcia, M., Constans, P. et al. Gaussian mapping of chemical fragments in ligand binding sites. J Comput Aided Mol Des 18, 101–118 (2004). https://doi.org/10.1023/B:jcam.0000030033.26053.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:jcam.0000030033.26053.40

Navigation