Diamond-based quantum computers could potentially operate at room temperature with optical interfacing, but their construction is challenging. Silicon carbide, used widely in electronics, may provide a solution. See Letter p.84
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
DiVincenzo, D. P. Science 270, 255–261 (1995).
Bennett, C. H. & DiVincenzo, D. P. Nature 404, 247–255 (2000).
Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Phys. Rev. Lett. 92, 076401 (2004).
Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Nature 479, 84–87 (2011).
Baranov, P. G. et al. JETP Lett. 82, 441–443 (2005).
Son, N. T. et al. Phys. Rev. Lett. 96, 055501 (2006).
Kane, B. E. Nature 393, 133–137 (1998).
Friesen, M. et al. Phys. Rev. B 67, 121301(R) (2003).
Zetterling, C.-M. (ed.) Process Technology for Silicon Carbide Devices (Inst. Electr. Eng., 2002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dzurak, A. Diamond and silicon converge. Nature 479, 47–48 (2011). https://doi.org/10.1038/479047a
Published:
Issue Date:
DOI: https://doi.org/10.1038/479047a