Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rewriting yeast central carbon metabolism for industrial isoprenoid production

Abstract

A bio-based economy has the potential to provide sustainable substitutes for petroleum-based products and new chemical building blocks for advanced materials. We previously engineered Saccharomyces cerevisiae for industrial production of the isoprenoid artemisinic acid for use in antimalarial treatments1. Adapting these strains for biosynthesis of other isoprenoids such as β-farnesene (C15H24), a plant sesquiterpene with versatile industrial applications2,3,4,5, is straightforward. However, S. cerevisiae uses a chemically inefficient pathway for isoprenoid biosynthesis, resulting in yield and productivity limitations incompatible with commodity-scale production. Here we use four non-native metabolic reactions to rewire central carbon metabolism in S. cerevisiae, enabling biosynthesis of cytosolic acetyl coenzyme A (acetyl-CoA, the two-carbon isoprenoid precursor) with a reduced ATP requirement, reduced loss of carbon to CO2-emitting reactions, and improved pathway redox balance. We show that strains with rewired central metabolism can devote an identical quantity of sugar to farnesene production as control strains, yet produce 25% more farnesene with that sugar while requiring 75% less oxygen. These changes lower feedstock costs and dramatically increase productivity in industrial fermentations which are by necessity oxygen-constrained6. Despite altering key regulatory nodes, engineered strains grow robustly under taxing industrial conditions, maintaining stable yield for two weeks in broth that reaches >15% farnesene by volume. This illustrates that rewiring yeast central metabolism is a viable strategy for cost-effective, large-scale production of acetyl-CoA-derived molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic pathway for acetyl-CoA-derived bioproducts in S. cerevisiae.
Figure 2: Identification of functional enzymes.
Figure 3: Identification of interfering, previously uncharacterized native reaction.
Figure 4: Fermentation performance.

Similar content being viewed by others

References

  1. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Fisher, K. & Woolard, F. X. Farnesene dimers and/or farnesane dimers and compositions thereof. US patent 8,669,403 (2014)

  3. McPhee, D. in Catalytic Process Development for Renewable Materials (eds Imhof, P. & van der Waal, J. C. ) Ch. 3, 51–79 (Wiley-VCH, 2013)

    Article  Google Scholar 

  4. McPhee, D. J. Compositions comprising a farnesene interpolymer. US patent 7,868,114 (2011)

  5. Schofer, S. J. et al. Biofene, a renewable monomer for elastomer materials with novel properties: polymer development, characterization and use. Rubber World 250, 25–30 (2014)

    CAS  Google Scholar 

  6. Garcia-Ochoa, F. & Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 27, 153–176 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen, J., Larsson, C., van Maris, A. & Pronk, J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 24, 398–404 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Chandran, S. S., Kealey, J. T. & Reeves, C. D. Microbial production of isoprenoids. Process Biochem. 46, 1703–1710 (2011)

    Article  CAS  Google Scholar 

  9. Verduyn, C., Stouthamer, A. H., Scheffers, W. A. & van Dijken, J. P. A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59, 49–63 (1991)

    Article  CAS  PubMed  Google Scholar 

  10. van Rossum, H. M., Kozak, B. U., Pronk, J. T. & van Maris, A. J. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metab. Eng. 36, 99–115 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Van Dien, S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 24, 1061–1068 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Heath, E. C., Hurwitz, J., Horecker, B. L. & Ginsburg, A. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J. Biol. Chem. 231, 1009–1029 (1958)

    CAS  PubMed  Google Scholar 

  13. Schramm, M., Klybas, V. & Racker, E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. Biol. Chem. 233, 1283–1288 (1958)

    CAS  PubMed  Google Scholar 

  14. Dugar, D. & Stephanopoulos, G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nature Biotechnol. 29, 1074–1078 (2011)

    Article  CAS  Google Scholar 

  15. Bogorad, I. W., Lin, T. S. & Liao, J. C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693–697 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Schramm, M. & Racker, E. Formation of erythrose-4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructose-6-phosphate. Nature 179, 1349–1350 (1957)

    Article  ADS  CAS  Google Scholar 

  17. Sonderegger, M., Schümperli, M. & Sauer, U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 2892–2897 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kocharin, K., Siewers, V. & Nielsen, J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol. Bioeng. 110, 2216–2224 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. van den Berg, M. A. et al. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271, 28953–28959 (1996)

    Article  CAS  PubMed  Google Scholar 

  20. Stojiljkovic, I., Bäumler, A. J. & Heffron, F. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J. Bacteriol. 177, 1357–1366 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozak, B. U. et al. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Res. 16, http://dx.doi.org/10.1093/femsyr/fow006 (2016)

  22. Kozak, B. U. et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab. Eng. 21, 46–59 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. Hedl, M., Tabernero, L., Stauffacher, C. V. & Rodwell, V. W. Class II 3-hydroxy-3-methylglutaryl coenzyme A reductases. J. Bacteriol. 186, 1927–1932 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, Y., Lafontaine Rivera, J. G. & Liao, J. C. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab. Eng. 25, 63–71 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Pahlman, A. K., Granath, K., Ansell, R., Hohmann, S. & Adler, L. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276, 3555–3563 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. de Jong, B. W., Shi, S., Siewers, V. & Nielsen, J. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact. 13, 39 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker, G. M. Yeast Physiology and Biotechnology (John Wiley & Sons, 1998)

  28. Cai, L. & Tu, B. P. On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76, 195–202 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. McBrian, M. A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310–321 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Lynd, L. R. et al. How biotech can transform biofuels. Nature Biotechol. 26, 169–172 (2008)

    Article  CAS  Google Scholar 

  31. Kuepfer, L., Sauer, U. & Blank, L. M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edwards, J. S., Ramakrishna, R., Schilling, C. H. & Palsson, B. O. in Metabolic Engineering (eds Lee, S. Y. & Papoutsakis, E. T. ) 13–57 (Marcel Dekker, 1999)

  33. Stephanopoulos, G., Aristidou, A. A. & Nielsen, J. Metabolic Engineering: Principles and Methodologies (Academic Press, 1998)

  34. Verduyn, C. Energetic Aspects of Metabolic Fluxes in Yeasts PhD thesis, Delft Univ. (1992)

  35. Förster, J., Famili, I., Fu, P., Palsson, B. O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers, P. J. & Stewart, P. R. Energetic efficiency and maintenance. Energy characteristics of Saccharomyces cerevisiae (wild type and petite) and Candida parapsilosis grown aerobically and micro-aerobically in continuous culture. Arch. Microbiol. 99, 25–46 (1974)

    Article  PubMed  Google Scholar 

  37. Watson, T. G. Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J. Gen. Microbiol. 64, 91–99 (1970)

    Article  CAS  PubMed  Google Scholar 

  38. Mo, M. L., Palsson, B. O. & Herrgard, M. J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37, (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lagunas, R. & Gancedo, J. M. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. Eur. J. Biochem. 37, 90–94 (1973)

    Article  CAS  PubMed  Google Scholar 

  40. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sandoval, C. M. et al. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metabol. Eng. 25, 215–226 (2014)

    Article  CAS  Google Scholar 

  42. de Kok, S. et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 3, 97–106 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 109, E111–E118 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Serber, Z., Lowe, R., Ubersax, J. A. & Chandran, S. S. Compositions and methods for the assembly of polynucleotides. US patent 8,110,360 B2 (2012)

  45. Guthrie, C. & Fink, G. R. in Methods in Enzymology Vol. 194 (Academic Press, 1991)

  46. van Dijken, J. P. et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706–714 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. Nijkamp, J. F. et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb. Cell Fact. 11, 36 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rose, M. D., Winston, F. & Hieter, P. Methods in Yeast Genetics, a Laboratory Course Manual (Cold Spring Harbor Laboratory, 1990)

  49. Brierley, R. A., Bussineau, C., Kosson, R., Melton, A. & Siegel, R. S. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme. Ann. NY Acad. Sci. 589, 350–362 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  51. Lipmann, F. & Tuttle, L. C. The detection of activated carboxyl groups with hydroxylamine as interceptor. J. Biol. Chem. 161, 415–416 (1945)

    CAS  PubMed  Google Scholar 

  52. Salt, D. E., Hay, S., Thomas, O. R. T., Hoare, M. & Dunnill, P. Selective flocculation of cellular contaminants from soluble proteins using polyethyleneimine: a study of several organisms and polymer molecular weights. Enzyme Microb. Technol. 17, 107–113 (1995)

    Article  CAS  Google Scholar 

  53. Mainguet, S. E., Gronenberg, L. S., Wong, S. S. & Liao, J. C. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metabol. Eng. 19, 116–127 (2013)

    Article  CAS  Google Scholar 

  54. Elliott, B. & Futcher, B. Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9, 33–42 (1993)

    Article  CAS  PubMed  Google Scholar 

  55. Navarro-Avino, J. P., Prasad, R., Miralles, V. J., Benito, R. M. & Serrano, R. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829–842 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. 278, 3265–3274 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amyris R&D, including Automated Strain Engineering (S. Chandran, D. Hollis, J. Lee, M. Patana, E. Shapland, N. Vongtharangsy, S. Annamalai, J. Dean, Y. Dharmadi, N. Klinkner, K. Patel and T. Slaby), High Throughput Screening and Automation (B. Kaufmann-Malaga, B. Carroll, L. Chao, J. Cragg, H. DePaul, C. Elliott, N. Gagelonia, R. Gonzalez, G. Hailu, J. Lau, D. Misumi, A. Navidi, J. Pantaleon, R. Perkins, S. Reisinger, M. Yu, W. Chit-Maung, L. Frenz, R. Hansen, D. Herrera, Z. Serber and C. Swimmer), Analytical Chemistry and Operations (S. Gaucher, B. Van Deren, M. Leavell, D. Diola, S. Fickes, R. Herman, F. Kha, A. Le, P. Norton, V. Rocha, R. Dutcher, B. Sauls, T. Treynor and M. Youngblood), Biology (J. Ubersax, S. Borisova, Q. Mitrovich, C. Paddon, M. Snydsman, J. Agresti, K. Dietzel, J. Kealey, N. Klinkner, J. LaBarge, R. Lowe, K. Takeoka, T. Treynor, T. Slaby, I. Zamora and B. Zhang), Scientific Computing and Software Engineering (C. Allen, M. Bissell, B. Hawthorne, A. Singh, S. Zhang, S. Lobosco, S. Pegg, J. Schonbrun, H. Tu, M. Ward and E. Wong), Fermentation Process Development (D. Pitera, E. Porcel, E. Bellissimi, J. Galazzo, T. Horning, J. Lievense, D. Melis and H. Tsuruta), Fermentation Operations (T. Leaf, J. Villar, M. Braunstein, M. Corpus, D. Do, S. Fernandez, C. Fuller, B. Friedrikson, S. Gottlieb, S. Leng, S. Louie, S. Moser, A. Porter, J. Paulas, T. Duong, J. Laoyan, P. Lovasik, R. Phan, H. Ta, N. Vongtharangsy, A. Wong and K. Yu), Bioanalytics (D. Abbott, M. Ayson, J. Denery, B. Lieu, C. Sandoval, T. Geistlinger, L. Kizer and N. Moss), and Laboratory services (R. Campbell, J. Allison, J. Davis, B. DiCarlo, A. Hammang, C. Love, B. Gellman and A. Salmon). We also thank K. Curran, A. Horwitz, S. de Kok, J. Lerman, Q. Mitrovich, C. Paddon, W. Szeto, J. Walter and J. Ubersax for feedback, and J. Cherry, W. Szeto, N. Renninger, J. Newman and J. Ubersax for support.

Author information

Authors and Affiliations

Authors

Contributions

A.L.M., A.M., M.S.D., and T.S.G. performed metabolic modelling. A.E.T., K.M.H., Y.T., E.A., Y.K., L.R., A.T., T.M.M., L.X., L.Z., L.C., J.L., S.G., P.J., R.M., H.J., P.W., D.P., G.W., and V.F.H. identified and characterized enzymes. R.H.D., A.M., J.L., D.E., C.-L.L., and J.S.L. developed fermentation processes with direction from P.W.H. L.R., A.E.T., T.M.M., M.S.D., A.T., K.M.H. and A.L.M. identified the phosphatase. K.M.H., Y.T., E.A., Y.K., A.T., T.M.M., L.R., H.J., J.W.W., R.H.D., M.S.D., C.D.R., P.R.S., A.E.T. and K.B. engineered production strains. A.E.T. and T.S.G. directed the work. A.E.T. and A.L.M. wrote the manuscript.

Corresponding author

Correspondence to Annie E. Tsong.

Ethics declarations

Competing interests

Some authors are stockholders of Amyris.

Additional information

Contractual obligations from commercial partnerships prohibit us from distributing (by ourselves or through a third party) strains described in our manuscript. However, we provide extensive genotypic descriptions of our strains, fully annotated metabolic models, and detailed methods that enable others to build upon our work.

Reviewer Information Nature thanks J. Dueber, J. D. Rabinowitz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 S. pomeroyi HMG CoA reductase is NADH-specific.

HMG CoA reductase variants from S. cerevisiae and S. pomeroyi were expressed in S. cerevisiae and tested for activity in cell-free extract. S. cerevisiae tHMGr has detectable activity only in the presence of NADPH, whereas S. pomeroyi HMGr has detectable activity only in the presence of NADH. Error bars represent standard deviation of n = 3.

Extended Data Figure 2 Exclusive use of heterologous pathways for cytosolic acetyl-CoA.

a, Deletion of ALD4 and ALD6 in the AMR-4 background results in a 22-fold decrease in total NAD+- and NADP+-dependent aldehyde dehydrogenase activity, relative to an ALD4+ALD6+ predecessor, with remaining activity probably from ALD5 (ref. 55). Cell-free extract samples were normalized by protein concentration. Error bars represent standard deviation of n = 3. bd, An ald4Δ ald5Δ ald6Δ strain expressing ADA, NADH-HMGr, xPK, and PTA, has the same yield (b), productivity (c), and titre (d) as its ALD5+ parental strain, indicating that the native PDH-bypass carries minimal flux for farnesene production in the engineered strains. Error bars represent range, n = 2.

Extended Data Figure 3 Strains achieve nearly identical yield and productivity under laboratory and manufacturing conditions.

a, b, Yields (a) and productivities (b) are compared for four strains at the 2-litre bench scale (x axis) and 200,000-litre manufacturing scale (y axis). The black dotted line shows the relationship y = x. Open blue circles represent strains that use the native S. cerevisiae central metabolism, whereas open green circles represent strains that use the synthetic pathway described in this work. Figures show cumulative yield and productivity averages over a 10-day fermentation, and are normalized to the highest yield and productivity at either scale. Error bars represent standard deviations for over 10 fermentation runs per strain, at each scale: for a, b, the n values on the x axis for the bench scale from left (first blue circle) to right (last green circle) were n = 34, n = 92, n = 22 and n = 13, respectively, and the n values on the y axis for the fermentation scale were from bottom (first blue circle) to top (last green circle) were n = 63, n = 33, n = 29, n = 14, respectively.

Extended Data Figure 4 Sensitivity of maximum F/O2 ratio to biomass stoichiometry.

The maximal F/O2 ratio at a given yield (using only native S. cerevisiae reactions) changes with the O2/sugar (O/S) molar ratio used for S. cerevisiae biomass generation. The same fermentation data are shown in Fig. 4e. The orange line (O/S = 2.29) uses empirical biomass stoichiometry of CBS 8066 (ref. 34), the blue line (O/S = 2.50) is the model output for iSc-AMRS-1 (native network) maximizing biomass flux on glucose in fully aerobic conditions, and the purple line (O/S = 2.55) uses the empirical biomass stoichiometry for CEN.PK113-7D56. Strains carrying the synthetic network (green circles) show farnesene stoichiometry exceeding the native network (blue circles) regardless of which O/S is used.

Extended Data Figure 5 Yield stability and titre in an industrial process.

a, Yield is almost constant over a 13-day-long fermentation. The strain shown is related to AMR-5, and uses the synthetic metabolic network to biosynthesize farnesene. b, Farnesene titres exceed 130 g farnesene per kg broth by the second week of the fermentation. Error bars represent the range, n = 2.

Extended Data Table 1 List of heterologous metabolic reactions evaluated in the context of wild-type reaction network, iSc-AMRS-1
Extended Data Table 2 Example sets of enzymes or pathways that increase theoretical maximum mass yield of farnesene from glucose to 29.8%
Extended Data Table 3 Strains with alternative acetyl-CoA pathways are less viable than unengineered strains after carbon exhaustion, and more sensitive to heatshock
Extended Data Table 4 Effect of iSc-AMRS-2 reaction network on maximum theoretical yield and O2 requirement for six molecules that could be derived from acetyl-CoA

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data comprising: Section 1 - Oxygen transfer rate in a fermentation vessel >100m3; Section 2 - Productivity of farnesene production using the native S. cerevisiae central metabolism; Section 3 - Description of AMR-5; Section 4 - Calculating upper and lower limits of farnesene produced / total O2 consumed (F/O2) at all yields; Section 5 - Strain genotypes. (PDF 509 kb)

Supplementary Table 1

This table shows the optimal flux distributions underlying the farnesene biosynthesis stoichiometries reported throughout the text and in Table 1, and also provides flux distribution maps. (XLSX 352 kb)

Supplementary Table 2

This table shows the calculations underlying the upper bound curves shown in Figure 4d and 4e, and also shows lower bounds. (XLSX 29 kb)

Supplementary Table 3

This table contains the definition of iSc-AMRS models, a description of the genome scale model used for stoichiometric calculations and determination of flux distributions. (XLSX 149 kb)

Supplementary Table 4

This table shows the lower bounds. (XLSX 8 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meadows, A., Hawkins, K., Tsegaye, Y. et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694–697 (2016). https://doi.org/10.1038/nature19769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19769

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research