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Non-line-of-sight (NLOS) imaging allows to observe objects partially or fully occluded from
direct view, by analyzing indirect diffuse reflections off a secondary relay surface. Despite
its many potential applications1–9, existing methods lack practical usability due to several
shared limitations, including the assumption of single scattering only, lack of occlusions, and
Lambertian reflectance. Line-of-sight (LOS) imaging systems, on the other hand, can ad-
dress these and other imaging challenges despite relying on the mathematically simple pro-
cesses of linear diffractive wave propagation. In this work we show that the NLOS imaging
problem can also be formulated as a diffractive wave propagation problem. This allows to
image NLOS scenes from raw time-of-flight data by applying the mathematical operators
that model wave propagation inside a conventional line-of-sight imaging system. By doing
this, we have developed a method that yields a new class of imaging algorithms mimicking
the various capabilities of LOS cameras. To demonstrate our method, we derive three imag-
ing algorithms, each with its own unique novel capabilities, modeled after three different
LOS imaging systems. These algorithms rely on solving a wave diffraction integral, namely
the Rayleigh-Sommerfeld Diffraction (RSD) integral. Fast solutions to RSD and its approx-
imations are readily available, directly benefiting our method. We demonstrate, for the first
time, NLOS imaging of complex scenes with strong multiple scattering and ambient light,
arbitrary materials, large depth range, and occlusions. Our method handles these challeng-
ing cases without explicitly developing a light transport model. We believe that our approach
will help unlock the potential of NLOS imaging, and the development of novel applications
not restricted to laboratory conditions, as shown in our results.
We have recently witnessed large advances in transient imaging techniques10, employing streak
cameras11, gated sensors6, amplitude-modulated continuous waves12, single-photon detectors (SPAD)13,
or interferometry14. Access to time-resolved image information has in turn led to advances in
imaging of objects partially or fully hidden from direct view1–3, 5–7, 15–18 (NLOS imaging). Other
methods are able to use information encoded in the phase of continuous light and do not use time
of flight4. In the basic configuration of an NLOS system, light bounces off a relay wall, travels to
the hidden scene, then propagates back to the relay wall, and finally reaches the sensor.
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Recent NLOS reconstruction methods are based on heuristic filtered backprojection2, 3, 6, 7, 21, or
attempt to compute inverse operators of simplified forward light transport models5, 9, 19. These
simplified models do not take into account multiple scattering, surfaces with anisotropic reflectance
or, with a few exceptions19, occlusions and clutter. Moreover, the depth range that can be recovered
is also limited, partially due to the difference in intensity between first- and higher-order reflections.
Existing methods are thus limited to carefully controlled cases, imaging isolated objects of simple
geometry with moderate or no occlusion. Moreover, while the goal of previous works is limited
to the reconstruction of hidden geometry, we develop a novel theoretical framework for general
NLOS imaging, reconstructing the irradiance at a virtual sensor; this enables applications beyond
geometry reconstruction, as we demonstrate in this paper. Our data and reconstruction code can be
found in a figshare repository20.

Time-of-flight LOS imaging has used a phasor formalism together with Fourier domain ranging12

to describe the emitted modulated light signal. Kadambi et al.22 extended this concept to recon-
struct NLOS scenes using phasors to describe hardware intensity modulation. We show that a
similar description can be used to model the physics of light transport through the scene. The
key insight of our method is that propagation through a scene of intensity-modulated light can be
modeled using a Rayleigh-Sommerfeld diffraction (RSD) operator acting on a quantity we term
the phasor field. This allows us to formulate any NLOS imaging problem as a wave imaging
problem (Figure 1), and to transfer well-established insights and techniques from classic optics
into the NLOS domain. Given a captured time-resolved dataset of light transport through a NLOS
scene, and a choice of a template LOS imaging system, our method provides a recipe that results
in a NLOS imaging algorithm mimicking the capabilities of the corresponding LOS system. This
template system can be any real or hypothetical wave imaging system that includes a set of light
sources and detectors. The resulting algorithms can then be efficiently solved using diffraction
integrals like the RSD, for which a variety of fast exact and approximate solvers exist24. Section A
in the supplemental illustrates this.

We start by mathematically defining our phasor field P(x, t). Let E(x, t) [
√

Wm−2] be a quasi-
monochromatic scalar field at position x ∈ S and time t, incident on (or reflected from) a Lamber-
tian surface S, with center frequency Ω0 and bandwidth ∆Ω� Ω0. We can then define

P(x, t) ≡

〈
1

τ

∫ t+τ/2

t−τ/2
|E(x, t′)|2 dt′

〉
−

〈
1

T

∫ t+T/2

t−T/2
|E(x, t′)|2 dt′

〉
(1)

as the mean subtracted irradiance [Wm−2] at point x and time t. The 〈·〉 operator denotes spatial
speckle averaging (for the reflected case) accounting for laser illumination, and τ represents the
averaging of the intensity at a fast detector, with τ � 1/∆Ω � T . The second integral in the
equation above is a long-term average intensity over an interval T � τ of the signal as seen by a
conventional non-transient photodetector. Now, let us define the Fourier component of P(x, t) for
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Figure 1: NLOS as a virtual LOS imaging system. Capturing scene data: a, A pulsed laser
sequentially scans a relay wall; b, the light reflected back from the scene onto the wall is recorded
at the sensor yielding an impulse response H of the scene. c, Virtual light source: The phasor
field wave of a virtual light source P(xp, t) is modeled after the wavefront of the light source of
the template LOS system. d, The scene response to this virtual illumination P(xc, t) is computed
using H . e, The scene is reconstructed from the wavefront P(xc, t) using wave diffraction theory.
The function Φ(·) is also taken from the template LOS system.

frequency ω as

P0,ω(x) ≡
∫ +∞

−∞
P(x, t) e−iωtdt, (2)

from which we can define a monochromatic component of the phasor field Pω(x, t) as

Pω(x, t) ≡ P0,ω(x) eiωt. (3)

Using the above, our phasor field P(x, t) can be expressed as a superposition of monochromatic
plane waves as P(x, t) =

∫ +∞
−∞ Pω(x, t) dω/2π. Since P(x, t) is a real quantity, the Fourier compo-

nentsP0,ω(x) are complex and symmetric about ω = 0. Note that in many places of this manuscript
we assign P(x, t) an explicitly complex value; in these cases it is implied that the correct real rep-
resentation is 1

2
(P(x, t)+P∗(x, t)). In practice the complex conjugate can be safely ignored in our

calculations. As can be seen in Section B in the supplemental, given an isotropic source plane S
and a destination plane D, and assuming that the electric field at S is incoherent, the propagation
of its monochromatic component Pω(x, t) is defined by an RSD-like propagation integral:

Pω(xd, t) = γ

∫
S

Pω(xs, t)
eik|xd−xs|

|xd − xs|
dxs, (4)

where γ is an attenuation factor, and k = 2π/λ is the wave number for wavelength λ = 2π/ω,
xs ∈ S and xd ∈ D. Note that, as described in Section B in the supplemental, we approximate γ as
a constant over the plane S as γ ≈ 1/| 〈S〉−xd|; this approximation has a minor effect on the signal
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amplitude at the sensor, but does not change the phase of our phasor field. While Equation 4 is
defined for monochromatic signals, it can be used to propagate broadband signals by propagating
each monochromatic component independently; this can be efficiently done by time-shifting the
phasor field (more details are provided in Section B.1 of the supplemental).

The key insight of Equation 4 is that, given the assumption of constant γ, the propagation of
our phasor field is defined by the same RSD operator as any other physical wave. Therefore, in
order to image a scene from a virtual camera with aperture at plane C, we can apply the image
formation model of any wave-based LOS imaging system directly over the phasor field P(xc, t) at
the aperture, with xc ∈ C. The challenge is how to compute P(xc, t) from an illuminating input
phasor field P(xp, t), where xp is a point in the virtual projector aperture P , given a particular
NLOS scene (see Figure 1).

Since light transport is linear in space and time-invariant23, 25, we can characterize light transport
through the scene as an impulse response functionH(xp → xc, t), where xp and xc are the positions
of the emitter and detector, respectively. The phasor field at the virtual aperture P(xc, t) can thus
be expressed as a function of the input phasor field P(xp, t) and H(xp → xc, t) as

P(xc, t) =

∫
P

[P(xp, t) ? H(xp → xc, t)] dxp, (5)

where ? denotes the convolution operator. Any imaging system can be characterized by its image
formation function Φ(·), which transduces the incoming field into an image

I(xv) = Φ (P (xc, t)) , (6)

where xv is the point being imaged (i.e., the point at the virtual sensor). This in turn can be
formulated as an RSD propagator, requiring to solve a diffraction integral in order to generate the
final image.

In an NLOS scenario, H(xp → xc, t) usually corresponds to 5D transients acquired via an ultrafast
sensor focused on xc, and sequentially illuminating the relay wall with short pulses at different
points xp (see Figure 1, and the Methods Section). Points xp and xc correspond to a virtual LOS
imaging system projected onto the relay wall. Once H(xp → xc, t) has been captured, both the
wavefront P(xp, t) and the imaging operator Φ(·) can be implemented computationally, so they are
not bounded by hardware limitations. We can leverage this to employ different P(xp, t) functions
from any existing LOS imaging system26 to emulate its characteristics in an NLOS setting.

We illustrate the robustness and versatility of our method by implementing three virtual NLOS
imaging systems based on common LOS techniques: a conventional photography camera capable
of imaging NLOS scenes without knowledge of the timing or location of the illumination source;
a transient photography system capable of capturing transient videos of the hidden scene revealing
higher-order interreflections beyond 3rd bounce; and a confocal time-gated imaging system robust
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Figure 2: Reconstructions of a complex NLOS scene. a, Photograph of the scene as seen from
the relay wall. The scene contains occluding geometries, multiple anisotropic surface reflectances,
large depth, and strong ambient and multiply scattered light. b, 3D visualization of the reconstruc-
tion using phasor fields (λ = 6 cm). We include the relay wall location and the coverage of the
virtual aperture for illustration purposes. c, Frontal view of the scene, captured with an exposure
time of 10 ms per laser position. d, Frontal view captured with just a 1 ms exposure time (24
seconds for the complete scan).

to interreflections. An in-depth description of these example imaging systems is provided in Sec-
tion C of the supplemental, including their corresponding P(xp, t) functions and imaging operators
Φ(·), while Section D describes some practical solver examples.

The spatial resolution of our virtual camera is ∆x = 0.61λL/d, where d is the virtual aperture
diameter, and L is the imaging distance. The distance ∆p between sample points xp in P (see
Figure 1) has to be small enough to sample H at the phasor field wavelength. We fix ∆p = 1 cm,
and unless stated otherwise λ = 4 cm. The minimum sampling rate is ∆p < λ/2; in practice we
found ∆p = λ/4 to provide the best trade-off between reconstruction noise and resolution.

The computational cost of our algorithm is bounded by the RSD solver computing the image
formation model Φ(·). Fast diffraction integral solvers exist24, with complexity O(N3 log(N)).
For the particular case of our confocal system, we formulate the algorithm as a backprojection (see
Section D.2 of the supplemental for details), so we are bounded by the computational cost of the
backprojection algorithm used.

One common application of NLOS imaging is the reconstruction of hidden geometry. Figure 2
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Figure 3: Robustness of our technique. a, Reconstruction in the presence of strong ambient
illumination (all the lights on during capture). b, Hidden scene with a large depth range, leading
to very weak signals from objects farther away.

shows the result on a complex scene with our virtual confocal camera. The scene contains multiple
objects with occlusions distributed over a large depth, a wide range of surface reflectances and
albedos, and strong interreflections. Despite this challenging scenario, our method is able to image
many details of the scene, at the correct depths, even with an ultra-short, 1 ms exposure. More
analysis on the robustness of our method to capture noise can be found in the Methods Section.
For simpler scenes (no occlusions, limited depth, controlled reflectance, and no interreflections),
our method yields results on par with current techniques, which already approach theoretical limits
regarding reconstruction quality (see the Methods Section).

In Figure 3 we demonstrate the robustness of our method when dealing with other challenging
scenarios, including strong multiple scattering and ambient illumination (3.a), or a high dynamic
range from objects spanning very large depths range (3.b). Last, our method also allows to imple-
ment novel NLOS imaging systems and applications, leveraging the wealth of tools and processing
methods available in LOS imaging. Figure 4 (top) demonstrates NLOS refocusing using our vir-
tual photography camera, computed with both the exact RSD operator and using a faster Fresnel
approximation, while the bottom row shows frames of NLOS femto-photography reconstructed
using our virtual transient photography system, revealing 4th and 5th bounce components in the
scene. The first, second and fourth frames, in green, show how light first illuminates the chair, then
propagates to the shelf, and finally hits the back wall three meters away. The frames in orange show
higher order bounces. The third frame shows the chair being illuminated again by light bouncing
back from the relay wall, while the last two frames show how the pulse of light travels from the
wall back to the scene (see the supplementary video). A description of the Fresnel approximation
to the RSD operator, as well as the LOS projector-camera functions used in these examples, appear
in the supplemental (Sections D.1 and C.2).

In the Methods Section, we include comparisons against ground truth for two synthetic scenes, in-
side a corridor of 2 m x 2 m x 3 m to create interreflections, simulated using a open source transient
renderer27; these scenes are included in a publicly available database28. We analyze the robustness
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Figure 4: Additional novel NLOS imaging applications of our method. (Top) NLOS refocus-
ing: The hidden letters (left) are progressively brought in and out of focus as seen from a virtual
photography camera at the relay wall, using the exact lens integral (blue), and the faster Fresnel
approximation (red). (Bottom) NLOS transient video: Example frames of light traveling through
a hidden office scene when illuminated by a pulsed laser. Timestamps indicate the propagation
time from the relay wall. Frames with a green border show third bounce objects, frames on orange
show 4th and 5th bounce effects.

of our method with and without such interreflections; the reconstruction mean square error does
not increase, remaining below 5 mm. Last, we progressively vary the specularity of the hidden ge-
ometry, from purely Lambertian to highly specular; again, the quality of the reconstructions does
not vary significantly (mean square error of about 2 mm).

The examples shown highlight the primary benefit of our approach: By turning NLOS into a virtual
LOS system, the intrinsic limitations of previous approaches no longer apply, enabling a new
class of NLOS imaging methods that leverage existing wave-based imaging methods. Formulating
NLOS light propagation as a wave does not impose limitations on the types of problems that can
be addressed, nor the datasets that can be used. Any signal can be represented as a superposition of
phasor field waves; our formulation thus can be viewed as a choice of basis to represent any kind
of NLOS data. Expressing the NLOS problem this way allows to create a direct analogy to LOS
imaging, which can be exploited to derive suitable imaging algorithms, and to implement them
efficiently.

We have shown three novel imaging algorithms derived from our method. Our results include
significantly more complex scenes than any NLOS reconstruction shown so far in the literature, as
well as novel applications. In addition, our approach is flexible, fast, memory-efficient, and lacks
computational complexity since it does not require inverting a light transport model. In the future,
we anticipate its application to other LOS imaging systems to, for instance, separate light transport
into direct and global components, or utilize the phase of Pω for enhanced depth resolution. Our
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virtual imaging system could also be used to create a second virtual imaging system to see around
two corners, assuming the presence of a secondary relay Lambertian surface in the hidden scene,
or to select and manipulate individual light paths to isolate specific aspects of the light transport in
different NLOS scenes. In that context, combining our theory with light transport inversions, via,
e.g., an iterative approach, could potentially lead to better results, and is an interesting avenue of
future work.
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Methods

Details on Data Acquisition

Hardware configuration: Our capture system, shown in the extended data Fig. 1, consists of a
Onefive Katana HP amplified diode laser (1 W at 532 nm, and a pulse width of about 35 ps used
at a repetition rate of 10 MHz), and a gated SPAD detector processed by a Time-Correlated Single
Photon Counter (TCSPC, PicoQuandt HydraHarp), with a time resolution of about 30 ps and a
dead time of 100 ns. Two additional CCD cameras are used to calibrate the laser’s position. The
measured time resolution of our system is approximately 65 ps, a combination of the pulse width
of the laser and the time jitter of the system.

Galvometer

CCD cameras
Laser head

SPAD

Figure M.1: Capture hardware used for the results shown in the paper.

NLOS measurement geometry: We obtain an impulse response function H(xp → xc, t) of the
scene by sequentially illuminating points xp on the relay wall with a short pulse, and detecting the
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signal returning at points xc.

Our hardware device is located 2.5 m from the relay wall, with the NLOS scenes hidden from direct
view. The FOV is 25 degrees. The walls are made of standard white styrofoam. The scanning area
in the relay wall (virtual camera) is 1.8 m x 1.3 m, with laser points xp spaced by ∆p = 1 cm in
each direction. The SPAD detector is focused at a position near the center of the grid. We avoid
scanning a small square region around the SPAD focused position (the confocal position) since the
signal becomes very noisy at this location. Figures 2 and 3 in the main paper provide additional
details for the specific scenes shown.

Exposure time: Our capture setup includes CCD cameras (extended data Fig. 1) to confirm the
3D position of every laser during the measurement; these are a limiting factor in the speed of our
experiments. Since the capture process runs in parallel, we use a very long 1 s exposure time per
laser position for our main datasets. They are used for all results unless otherwise specified. In
addition we capture scenes without without the additional CCD photographs that can be collected
much faster and with much shorter exposure times. In Figure 2 we show datasets of an office
scene captured with exposure times of 1 to 10 ms per laser position, which results into a total
capture time as low as 24 s. Further reconstructions of a shelf dataset are shown later as additional
results showing that we can reduce exposure times at least down to 50 ms per data point without
a significant loss in quality even with ambient light. This results in less than 20 minutes of total
capture time. Note also that in our current prototype, we capture data sequentially with a single
SPAD. Prototype SPAD arrays are currently under development, and it seems likely that a 16x16
array will be available by the end of the year. We thus expect to be able to capture 256 data points
in less than 0.1 s in the near future.

Collected data: In total we use 10 experimental and two simulated datasets in the paper. All
experimental datasets use a single SPAD location and 130 by 180 laser positions. The datasets and
exposure times are:

• An Office Scene collected with 1 second exposure per laser position. This dataset is used
to create the video shown in the supplementary video, frames of which are shown in Figure
4(bottom). A photograph and reconstruction of this scene is also shown in the supplementary
video. The data is analyzed in extended data Fig.3 and extended data Table 1.

• An Office Scene collected with 10 ms, 5 ms, and 1 ms, used in Figures 2, extended data
Fig.6, extended data Fig.7, and extended data Fig.8, and extended data Table 1.

• A scene of a bookshelf used in Figure 3(a) and in extended data Table 1.
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Total Photons Photons/bin Max. bin Avg./ laser pos.
Large depth scene 3215722952 9.7 552 13742

NLOS letters 6502986696 19.6 2889 27791
Shelf 6158590767 18.6 2074 26319

Office Scene 6201680972 18.7 1406 26503
Office Scene 10 ms 48017499 0.14 18 2716
Office Scene 5 ms 24012257 0.072 15 1026
Office Scene 1 ms 4801568 0.014 6 205

Table 1: Photon statistics for the captured data: used in the paper and supplement. The first four
scenes were captured with 1 s exposure time. The first column shows the total photons counted,
the second the average photon count per time bin, the third is the maximum count over all time
bins and the last contains the average number of photons collected in each laser position in the
dataset.

• A scene of a bookshelf captured with various exposure times and ambient light conditions
shown in extended data Fig.2 and extended data Fig.5.

• A scene with letters distributed over a large depth used in Figure 3(b) and extended data
Table 1.

• A scene of the letters NLOS in a plane used in Figure 4(Top) and extended data Table 1.

To provide further insight into the noise and artifacts present in our data we go through an analysis
of the raw data from our 1 second exposure office scene. We compare the maximum and average
number of photons per second and laser position xp for our captured scenes in the extended data
Table 1. The dark count rate of our detector is 10 photons per second. We do not explicitly subtract
dark counts nor ambient light or backgrounds.

Note that the high total photon numbers in the transient responses (extended data Table 1) are due
to the long responses associated with the large depth and volume of the scenes, and not due to a par-
ticularly bright signal. Example data for a scene of a shelf is shown in extended data Fig.2 (whose
reconstruction can be found on extended data Fig.5). In this scene, our longest 1 s exposure time
peaks at about 150 photons/s (such peaks are probably due to the presence of specular surfaces),
and the captured signal is extremely noisy. In comparison, the recent method by O’Toole et al.9

acquires a brighter, cleaner signal in 0.1 s, peaking at about 600 photons/s, due to the use of retrore-
flective paint applied on the hidden objects (data from their data resolution chart 40cm

dataset).

Let us further analyze the captured data. In extended data Fig.3(a) we show a visualization of our
data matrix for the 1s exposure office scene using the function imagesc in Matlab, where each
row is the data collected for a different location of the laser illumination spot, and each column
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Figure M.2: Data Comparison: a, Raw data for one of the laser positions xp. Shown is the
number of photons per second accumulated in each time bin (i.e. the collected histogram divided
by the integration time in seconds). Time bins are 4 ps wide. As expected, all three curves appear
to follow the same mean, but have a larger variance for lower exposure times. The raw data thus
gets significantly noisier as exposure time decreases. The effects on the reconstruction, however,
are rather minor as Extended Data Fig.4 shows. b, Example dataset from O’Toole et al.9 for
comparison.

contains a different time bin. The first time bin corresponds to the time when the illumination laser
pulse leaves the relay wall. In the images we do not show time bins 10001 to 15000 as they are
mostly empty due to the closing of the gate. As can be seen there are some sparse, very large peaks
in the dataset that saturate the counting registers of our TCSPC (216 − 1 counts). As we will see,
these artifacts in the data are likely due to imperfections in the gating or optical setup.

Let us focus on the first instants of the captured data shown in extended data Fig.3(a), which reveal
features that look like straight diagonal lines in the first few time bins. The fact that there are
straight lines in this plot, indicates that they are likely related to a first-bounce signal, rather than
the actual scene response. NLOS signals should show up as hyperbolas or sections of hyperbolas
in this type of visualization and the curvature of the hyperbolas should be highest at the earliest
time bins. The image contains many more features that look like straight lines that do not appear
to have the correct hyperbolic curvature to be actual NLOS signals. Many of them also appear
identically again in the other datasets which is another hint that they are probably not real NLOS
data, but artifacts related to the measurement system. Our algorithm is completely agnostic to the
presence of these artifacts. The brightest peaks also appear too early in the data to be associated
with a NLOS object. To see this, consider that the closest object in any of our scenes is the chair in
the office scene and it is more than 50 cm away from the wall. Consequently the first time response
from an actual object cannot arrive at the SPAD earlier than 3.3 ns after the laser illuminates the
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Figure M.3: Visualization of the raw data for our long exposure office scene. From left to right:
a, Base 10 logarithm of the photon counts in all time bins. b, After removing the first 833 time
bins in each dataset the plots show the photon counts for the laser position that received the largest
total number of photons in the datset, c, the counts for the laser position that received the median
number of photon counts, and d, the laser position that contains the time bin with the global
maximum count in the entire set.

relay wall. Time bins are 4 ps wide. Any data before time bin 833 therefore can only be an artifact.
We will speculate more about the origin of these artifacts later.

If we ignore those first 833 time bins that contain no useful data we obtain a dataset that can
yield some meaningful statistics about the data. In this dataset the largest photon count in all our
over 200 million time bins is smaller than 1400 photons. Note that as we show below, this 1400
maximum is likely still due to a gate artifact that just happened to occur slightly later than 3 ns into
the dataset. Statistics for all datasets are shown in extended data Table 1.

Maximum photon counts usually come from the objects in the scene closest to the wall. Consid-
ering the large depth and specularities of our scenes, most of the reconstructed scene volume is
actually using signals much weaker than the maximum signal as voxels are further away from the
wall. Signals from a given surface are expected to drop in magnitude with one over distance to the
power of four as distance is increased. An object generating 100 photon peaks at 50 cm distance
in the front of our scene would therefore only create 100/8 photons if placed at at 1 m and 100/625
= 0.2 photons at 2.5 m towards the end of our office scene. This ability to handle scenes with large
dynamic range in the data is another stated advantage of our algorithm.

In extended data Fig.3(b) we show a plot of the photon counts over time bins for the laser position
that received the most total photons. We again see the extreme peak of 216 − 1 counts in the
beginning of the dataset. Again, this peak can not possibly be a real third bounce signal as it would
require for the pulse to travel between laser position and SPAD position significantly faster than
the speed of light. The actual NLOS data starting around time bin 1000 and peaking at just above
50 photons.

Finally we show a plot of the laser position that received the total photon count closest to the
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median of all laser positions (extended data Fig.3(c)). We can see that this data generally stays
below 150 photons with what are likely specular peaks reaching up to 200 photons and a large 450
photon peak at the beginning of the dataset that is either a specular peak or another gate artifact. At
this point we want to also point out that since we illuminate only a grid of points at the wall, we do
not capture all the specular peaks in our data. In order to see a specular reflection peak from a scene
surface we have to get lucky and illuminate the exact spot on the wall that results in the specular
reflection to overlap with the the SPAD position (see in the Supplementary Material Figure S.2
for an illustration). Therefore specular peaks in our measurements can vary greatly based on how
close to the peak the laser actually sampled the wall. Again we want to point out that this type of
uncontrolled artifact does not affect our algorithm.

As we stated above, the time bin with the highest photon count when ignoring obvious early ar-
tifacts contains about 1400 photons. Next we plot the laser position that contains this time bin
(extended data Fig.3(d)). Note that zero on the x-axis here corresponds to time bin 834. As we
see the 1400 photon peak appears very close to the beginning of the transient and may be a gating
artifact that occurs in the data just after the opening of the gate. This type of data distortion is
described further below. If not a gating artifact, the peak is likely a specular reflection as it is very
short and could only be caused by a small isolated diffuse patch or a specular surface in the scene.
Peaks from extended diffuse surfaces are necessarily longer in duration.

We thus conclude that while our data contains significant spurious artifacts, the actual photon
counts useful for reconstructions are no higher nor cleaner than in previous methods. Note that the
removal of early artifacts is only done here to generate Figures M.3(b-d) to allow visualization.
All reconstructions shown in the manuscript contain the full recorded data without the removal of
any potential artifacts or time bins.

Even though an understanding of the origin of the artifacts in the data is not needed for our method,
we can offer some additional speculation for sources of some of them:

• Many of the early peaks in our data are likely related to imperfections in our gating method.
When the SPAD gate opens just after the laser pulse has passed, photoelectrons in the SPAD
may can cause a detection event that is not due to an actual photon, but rather might be due
to the electrons excited by the first bounce light and trapped in long lived states in the SPAD.
Even so these electrons are not amplified, they need to be transported off the SPAD junction
or they can cause counts as soon as the gate opens.

• In certain cases it is also possible that the gate does not actually block the pulse for some laser
positions. The gate has to be positioned such that it blocks the laser in all laser positions,
while not blocking any actual signal. This is not always possible, and we do not re-adjust
the gate for each position while scanning.

• In our past setups we have observed many effects inside the imaging system that can keep
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light trapped long enough to cause a peak at the time when the the NLOS data arrives. This
can be due to multiple reflections between lenses, multiphoton fluorescence in the glass or
coating of the lenses or stray light reflecting off a random surface at the right distance. We
have confirmed some of these effects, but suspect there are many more.

• In particular we can see light that travels from the laser spot to the SPAD, reflects off the
surface of the SPAD pixel, is imaged back to the relay wall and comes back to the SPAD. In
confocal or near confocal configurations this can create a peak that is many times brighter
than the actual data.

• Retro-reflective targets can be used to reduce many of these artifacts, most of which are
created either by the laser or a first bounce reflection of the laser. If the hidden target is
retroreflecting, the ratio between the brightness of the laser and its first bounce and the
brightness of the 3rd bounce NLOS data is reduced by multiple orders of magnitude.

Helmholtz reciprocity: Ideally, we would capture H(xp → xc, t) sampling points on both the
projector aperture xp ∈ P and the camera aperture xc ∈ C. In our current setup with a single SPAD
detector, we only sample a single point for xc. Using Helmholtz Reciprocity we can interpret these
datasets as having a single xp and and array of xc. The choice of capture arrangement is made
for convenience since it is easier to calibrate the position of the laser spot on the wall. Improved
results are anticipated once array sensors become available (currently under development).

Additional Validation and Discussion

Resolution Limits

The resolution limit for NLOS imaging systems with an aperture diameter d at imaging distance
L is closely related to the Rayleigh diffraction limit7: ∆x = 1.22cσL/d, with c the speed of light,
for a pulse of full width at half maximum σ. O’Toole et al.9 derive a criterion for a resolvable
object based on the separability of the signal in the raw data, not in the reconstruction, resulting in
a similar formula of ∆x = 0.5cσL/d ≈ 0.5λL/d.

In our virtual LOS imaging system, we can formulate a resolution limit that ensures a minimum
contrast in the reconstruction, based on the well-known resolution limits of wave based imaging
systems. The resolution limit therefore depends on the particular choice of virtual imaging system.
For an imaging system that uses focusing only on the detection or illumination side, this limit is
approximated by the Rayleigh criterion. For an imaging system that provides focusing both on the
light source and the detector side, the resolution doubles (as it does for example in a confocal or
structured illumination microscope) and becomes ∆x = 0.61λL/d.
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Effect of Strong Interreflections

In order to confirm the presence and effect of strong interreflections in our captured data, we
compare it qualitatively with primary data from a synthetic bookshelf scene, with and without
interreflections. The bookshelf is placed in a corridor of 2 m x 2 m x 3 m, with only a single lateral
aperture of 1 m x 2 m to allow imaging the hidden scene. The shelf has a size of 1.4 m x 0.5 m,
placed at 1.7 m from the relay wall, and 0.3m from the lateral walls. The virtual aperture has a size
of 1.792m x 1.7920m and a granularity of 256 x 256 laser points; we use a λ = 4 cm, ∆p = 2.8 cm.

As can be seen in extended data Fig.4, the synthetic data clearly shows how the presence of in-
terreflections adds, as expected, low-frequency information resembling echoes of light. This same
behavior can be seen in the real captured data, revealing the presence of strong interreflections.

Additionally, we evaluate the robustness of our method in the presence of such interreflections.
Similar to recent work9, we compare between a voxelization of the ground-truth geometry and a
reconstructed voxel-grid obtained from our irradiance reconstructions, with and without including
interreflections; the resulting mean square error is:

MSE without interreflections (extended data Fig.4.a): 4.93 mm.

MSE with interreflections (extended data Fig.4.b): 4.66 mm.

a b c

Figure M.4: Robustness to multiple reflections: Result on the synthetic bookshelf scene. a,
Without interreflections. b, Including high-order interreflections. The quality of the results is very
similar. c, Primary data (streak images) from the same scene without (top), and with interreflections
(middle). This synthetic data clearly shows how the presence of interreflections adds, as expected,
low-frequency information resembling echoes of light. The bottom image shows primary data
captured from the real office scene in Figure 2. It follows the same behavior as the middle image,
revealing the presence of strong interreflections.
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Effect of Exposure Time

Ambient light: To analyze how well our technique works in ambient light and with much faster
exposure times, we perform several additional measurements using progressively shorter exposure
times, showing that we can reduce exposure times at least down to 50 ms per data point without a
significant loss in quality (see extended data Fig.5). Extended data Fig.2 shows raw data for one of
the laser positions. In particular, it shows the number of photons per second accumulated in each
time bin (i.e. the collected histogram divided by the integration time in seconds). As expected,
all three curves appear to follow the same mean, but have a larger variance for lower exposure
times. The raw data thus gets significantly noisier as exposure time decreases. The effects on our
reconstruction, however, are rather minor as extended data Fig.5 shows.
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Figure M.5: Robustness to ambient light and noise: a, Hidden bookshelf. b, Imaging results
with increasingly higher exposure times; even at 50 ms, there is no significant loss in quality. Top
row: Using only the pulsed laser as illumination source. Bottom row: adding a large amount of
ambient light (same conditions as the photograph in (a)), the quality also remains constant. c,
Difference between the 50 ms and 1000 ms exposure captures for the lights off case.

Short exposure captured data: Extended data Fig.6 shows the reconstruction of the office
scene (Figure 2) for short exposure times of 10 ms, 5 ms, and 1 ms for each of the roughly 24000
laser positions. This leads to total capture times of about 4 minutes, 2 minutes and 24 seconds
respectively. Plots showing raw data from those datasets are shown in extended data Fig.7.

We compare the results of our reconstructions on the 1 ms-data, against filtered backprojection
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10 ms 5 ms 1ms

a b

Figure M.6: Short exposure reconstructions: Reconstruction of the office scene using very short
capture times. a, Photograph of the captured scene. b, From left to right, reconstructions for data
captured with 10, 5, and 1 ms exposure time per laser. The total capture time was about 4 minutes,
2 minutes, and 24 seconds, respectively.

with a Laplacian filter3, as well as the LOG-filtered backprojection21, which generally achieves
better results. In fact, we are not aware of any reconstruction method that has been shown to
consistently outperform a LOG-filtered backprojection. Extended data Fig.8 shows the result of
this comparison.

Non-Lambertian Surfaces

To validate the robustness of our method in the presence of non-Lambertian materials in the hidden
scene, we have created a synthetic scene made up of two letters, R and D, one partially occluding
the other, placed in a corridor of 2m x 2m x 3m, with only a single lateral aperture of 1 m x 2 m
to allow imaging the hidden scene. The letters have a size of 0.75 m x 0.8 m, placed at 1.25 m
and 1.7 m from the relay wall, respectively, and 0.5m from the lateral walls (see extended data
Fig.9.a). The virtual aperture has a size of 1.792 m x 1.792 m and a granularity of 128 x 128
laser points; we use a λ = 4∆p with ∆p = 5.6 cm. We start with purely Lambertian targets, and
progressively increase their specularity; we use the Ward BRDF model29, decreasing the surface
roughness, using available transient rendering software27. The simulation includes up to the fifth
indirect bounce.

Extended data Fig.9.b shows the resulting irradiance reconstructions. Since our method does not
make any assumption about the surface properties of the hidden scene, the changes in material
appearance do not significantly affect our irradiance reconstructions. Similar to recent work9 we
compare between a voxelization of the ground-truth geometry, and the reconstructed voxel-grid;
the resulting mean square error for each of the different reflectances is as follows:

MSE for a surface roughness of 1 (perfect Lambertian): 2.1 mm.

MSE for a surface roughness of 0.4: 2.2 mm.
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Figure M.7: Short exposure data: Photon counts in the raw data for our office scene for 10 ms
(top row), 5 ms (center row), and 1 ms (bottom row) exposure times per laser. After removing
the first 833 time bins in each dataset the columns show (left) the photon counts for the laser
position that received the largest total number of photons in the dataset, (center) the counts for the
laser position that received the median number of photon counts, and (right) the laser position that
contains the time bin with the global maximum count in the entire set.

a b c

Figure M.8: Comparison to prior methods: Reconstruction of the office scene using very short
capture times of 1 ms per laser (24 seconds in total). a, Filtered backprojection using the Laplacian
filter. b, LOG-filtered backprojection. c, Our method.
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MSE for a surface roughness of 0.2: 2.2 mm.
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Figure M.9: Robustness to scene reflectance: a, Geometry of our experimental setup. b, From
left to right, imaging results for the Lambertian targets (roughness 1), and increasingly specular
surfaces (roughness 0.4 and roughness 0.2). The reconstructed irradiance is essentially the same
for all cases.

Reconstruction Comparison with Other Methods

Our imaging system allows to reconstruct hidden geometry. For this particular application, we
show here a comparison using the publicily available confocal dataset9. This set can be recon-
structed using different NLOS methods; we show results for the CNLOS deconvolution9, filtered
backprojection7, and our proposed method. For these confocal measurements, backprojection can
be expressed as a convolution with a pre-calculated kernel, and thus all three methods are using the
same backprojection operator. Neither our method nor filtered backprojection are limited to confo-
cal data, and can be acquired making use of simpler devices and capture configurations. They can
thus be applied to a broader set of configurations and considerably more complex scenes. For the
CNLOS deconvolution method9, we leave the optimal parameters unchanged. For our proposed
virtual wave method, we use the aperture size and its spatial sampling grid published in the supple-
mentary materials to calculate the optimal phasor field wavelength. For the filtered backprojection
it is important to choose a good discrete approximation of the Laplacian operator in the presence
of noise. Previous works implicitly do the denoising step by adjusting the reconstruction grid size
to approximately match the expected reconstruction quality2, 3, 7, or by downsampling across the
measurements9. All of them can be considered as proper regularizers. To provide a fair compari-
son without changing the reconstruction grid size, we convolve a Gaussian denoising kernel with
the Laplacian kernel, resulting in a LOG filter, which we apply over the backprojected volume.

Note that a large improvement in reconstruction quality for the simple scenes included in the
dataset (isolated objects with no interreflections) is not to be expected, since existing methods
already deliver reconstructions approaching their resolution limits. We nevertheless achieve im-
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proved contrast and cleaner contours in our wave camera method, due to our better handling of
multiply scattered light, which pollutes the reconstructions in the other methods (see extended
data Fig.10).

In the noisy datasets (extended data Fig.11), filtered backprojection fails. CNLOS includes a
Wiener filter that performs well removing uniform background noise, although a noise level must
be explicitly estimated. Our phasor field virtual wave method, on the other hand, performs well
automatically, without the need to explicitly estimate a noise level. This is particularly important
in complex scenes with interreflections, where the background is not uniform across the scene, and
the noise level cannot be reliably estimated.

Nevertheless, our main contribution is not improving the reconstruction for simple, 3rd-bounce
scenes. Instead, our method allows to derive a new class of NLOS algorithms, which can success-
fully handle scenes of much larger complexity.
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Figure M.10: Reconstruction comparison on a public dataset. From left to right: CNLOS
deconvolution, filtered (LOG) backprojection, and our proposed method. A large improvement
in reconstruction quality for the simple scenes included in the dataset (isolated objects with no
interreflections) is not to be expected, since existing methods already deliver reconstructions ap-
proaching their resolution limits. Nevertheless, our method achieves improved contrast and cleaner
contours, due to better handling of multiply scattered light.
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Figure M.11: Reconstruction comparison on a public dataset. From left to right: CNLOS
deconvolution, filtered (LOG) backprojection, and our proposed method. A large improvement
in reconstruction quality for the simple scenes included in the dataset (isolated objects with no
interreflections) is not to be expected, since existing methods already deliver reconstructions ap-
proaching their resolution limits. Nevertheless, our method achieves improved contrast and cleaner
contours, due to better handling of multiply scattered light.
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This supplemental document contains the following information:

A Overview of the method

B Derivation of the phasor field

C LOS template functions

D Implementation details of the RSD solvers
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A Overview of the Method

NLOS Measurements (Methods)

Time-resolved 
impulse response

Simple numerical 
integration

Solvers (Section D)

Backprojection 
based solver

Diffraction imaging
Fourier solver

LOS Templates (Section C)

· Projector function

· Camera function

Image 
Temporal convolution

Figure S.1: Our imaging framework: The flowchart describes how to image an NLOS scene from
a chosen template LOS system. Please refer to the text for details.

Figure S.1 illustrates the flowchart of our method, while Table S.1 summarizes the symbols used
in the main paper and throughout this document. One of the key ideas is that we transform the
relay wall into the virtual aperture or lens of any LOS system (see Figure 1 in the main paper). By
formulating the NLOS problem as a diffractive wave propagation problem, we can image hidden
scenes of unprecedented complexity from raw time-of-flight data, by applying the mathematical
operators that model wave propagation inside our virtual LOS imaging system (Section B).

First, a template LOS imaging system is selected (green box); our corresponding NLOS algorithm
will inherit the same capabilities and features as the chosen template LOS system. Note that only a
computational model is needed, not a physical implementation. The LOS system is characterized
by the source function P(xp, t) describing the illumination wavefront, and the camera function
Φ (·) describing the imaging process at virtual LOS aperture. Both functions can be derived from
existing diffraction and LOS literature. In Section C we derive such functions for the three LOS
examples we have implemented: A conventional photography camera; a transient camera; and a
confocal time-gated camera.

The blue box illustrates our imaging equation, using the chosen P(xp, t) and Φ (·) functions:

I(xv) = Φ

(∫
P

[P(xp, t) ? H(xp → xc)]dxp
)
, (S.1)

where ? is the convolution operator in the temporal domain. Background to derive this equation
is included in Section B. Equation S.1 can be solved numerically, which is straightforward, but
slow. We propose two alternative solvers: Since the camera function Φ(·) is essentially an RSD
propagator, we can rewrite Equation S.1 in terms of an RSD operator, for which fast algorithms
exist. Moreover, we note that Equation S.1 can be expressed as a backprojection, enabling the use
existing backprojection methods1, 2. We illustrate the flexibility of our approach by applying these
different solvers to our three template LOS systems. This is described in more detail in Section D.
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Last, Methods Section provides details about our NLOS data acquisition step (H(xp → xc, t), or-
ange box), which is similar to other NLOS methods. Additional results, validation and discussions
are included in Methods Section.

3



Symbol Definition Units
S Source plane of a propagating wave
D Destination plane of a propagating wave
P Virtual projector aperture at the relay wall (Figure 1, a)
C Virtual camera aperture at the relay wall (Figure 1, a)
xs, xd, xp, xc Point at planes S, D, P , and C respectively
∆p,∆c Distance between points at planes P and C respectively [m]

xv Reconstructed (voxel) point of a volumetric space
∆x Size of each voxel of the reconstructed volume [m]

t Time
P(x, t) Phasor field [Wm−2] ∈ R
Pω(x, t) Monochromatic phasor field [Wm−3] ∈ C
λ Wavelength of the monochromatic phasor field [m]

ω Frequency of the monochromatic phasor field [s−1]

P0,ω(x) Amplitude of the monochromatic phasor field [Wm−2] ∈ C
xls Position of the virtual laser
t0 Time of emission of the virtual laser [s]

σ Pulse’s e−
1
2 attenuation radius [s]

E(x, t) Electric field [V m−1]

E0(x) Amplitude of the electric field [V m−1]

Ω0 Center frequency of the electric field E [s−1]

∆Ω Frequency bandwidth of the electric field E [s−1]

τ Average time interval of the ultrafast detector [s]

T Long term average time interval (τ << ∆Ω−1 << T ) [s]

H(xp → xc, t) Time-resolved impulse response function
Φ(·) Image formation model
I Image reconstructed by operator Φ(·)

Table S.1: Table of symbols used in our paper.
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B Derivation of the Phasor Field

Here we derive the Rayleigh-Sommerfeld diffraction (RSD) integral for the phasor field. Con-
sider a point light source at a location xs that emits light with a sinusoidal time-varying irradiance
L(x, t) = Re[L0 (e−iωt + 1)] with amplitude L0 and modulation frequency ω. More formally,
L(t) and L0 relate with the electromagnetic field E(x, t) as L(x, t) =

〈
1
τ

∫ t+τ/2
t−τ/2 |E(x, t′)|2dt′

〉
and

L0(x) = limT→∞
1
T

∫ +T/2

−T/2 |E(x, t)|2dt, with τ a sufficiently small value. The operator 〈·〉 is the spa-
tial averaging operator that takes into account multiple possible measurements for e.g. removing
the effect of laser’s speckle.

We define the real-valued phasor field P(x, t) at a point in space as

P(x, t) = L(x, t)− L0(x). (S.2)

Since L(x, t) is modulated with a single frequency ω, this allows us to consider P(xs, t) as a
monochromatic phasor field wave Pω emitted from a point light source at location xs, with ampli-
tude P0,ω(xs) and oscillating at a frequency ω:

P(xs, t) = Pω(xs, t) = P0,ω(xs)eiωt. (S.3)

In the following, wherever we write an explicitly complex expression for P(xs, t), it is implied that
the actual real phasor field is 1

2
(P(xs, t) +P∗(xs, t)). In practice we can safely ignore the complex

conjugate component in all our computations. Note that the constant L0(x) term is only necessary
to link the phasor field wave to a measurable physical quantity, since real intensities cannot be
negative. We can think of it as the monochromatic wave component at frequency ω = 0. Since our
propagator is linear and does not mix different frequency components it can safely be ignored as it
can only create zero-frequency contributions.

To determine the light intensity and thereby the phasor field at any point in space and time (xd, t)
we have to account for the travel time from xs to xd, defined as tp = |xd − xs|/c, with c the
propagation speed, and the radial drop-off in light intensity:

Pω(xd, t) = P0,ω(xs)
eiω(t+tp)

|xd − xs|2
= P0,ω(xs)

eiω(t+|xd−xs|/c)

|xd − xs|2
= P0,ω(xs)

eiωt+ik|xd−xs|

|xd − xs|2
, (S.4)

where k = 2π/λ is the wave number at the modulation wavelength, λ. If instead of a single light
source we have a collection of incoherent sources comprising a surface S, we have

Pω(xd, t) =

∫
S

P0,ω(xs)
eiωt+ik|xs−xd|

|xs − xd|2
dxs. (S.5)

This equation looks like the Rayleigh-Sommerfeld propagator, except for the squared denominator,
and the missing 1/iλ. The 1/iλ term is a global constant that does not qualitatively affect our
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propagator. We approximate |xs− xd|2 ≈ |xs− xd||xavgS − xd| where xavgS is the average position
of all source points in S. Pulling this constant term out of the integral, we obtain

Pω(xd, t) ≈
1

|xavgS − xd|

∫
S

P0,ω(xs)
eiωt+ik|xs−xd|

|xs − xd|
dxs

=
1

|xavgS − xd|

∫
S

Pω(xs, t)
eik|xs−xd|

|xs − xd|
dxs, (S.6)

which is the RSD (Equation 4 in the main text) for scalar waves, with γ = 1/|xavgS − xd| . This
approximation does not affect the phase term, causing only a slow-varying error in amplitude.
Given a known source plane, this error can be precomputed. Since it does not alter the phase of
the signal, it has no effect on the reconstructed geometry.

Furthermore, as we show in Section C.1, most real imaging systems do not invert the 1/r term in
the RSD propagator. Further research may also lead to alternative formulations of the phasor field
that deal with this error in a more elegant way.

In the following, we useRxd (P0,ω(xs, t)) as a shorthand for the RSD operator:

Rxd (P0,ω(xs, t)) =
1

|xavgS − xd|

∫
S

Pω(xs, t)
eik|xs−xd|

|xs − xd|
dxs. (S.7)

B.1 Propagating Broadband Signals

The derived RSD operator propagates only monochromatic waves Pω(xs, t) = P0,ω(xs)eiωt. Any
broadband signal can be propagated by first writing it as a superposition of monochromatic waves,
then propagating each one individually. For a general P(x, t) we therefore define the RSD operator
as:

Rxd(P(x, t)) = Rxd

(∫ +∞

−∞
Pω(x, t)

dω

2π

)
=

∫ +∞

−∞
Rxd (Pω(x, t))

dω

2π
. (S.8)

Alternatively, a broadband RSD operator can be implemented in the time domain by shifting the
components of P in time as follows:

Rxd (P(x, t)) =

∫ +∞

−∞
Rxd (Pω(x, t))

dω

2π

=

∫ +∞

−∞

∫
S

P0,ω(xs)eiωt−ik|xs−xd|dxs
dω

2π

=

∫
S

∫ +∞

−∞
P0,ω(xs)eiω(t−

1
c
|xs−xd|)dω

2π
dxs

=

∫
S

P(xs, t−
1

c
|xs − xd|)dxs (S.9)
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We will make use of this property when deriving the camera functions for our example cameras
(see Table S.3).

B.2 Non-Lambertian Surfaces

The RSD propagator we derive requires that the source plane S be Lambertian. Since all our
cameras rely primarily on RSD propagators from the aperture of the relay wall, the Lambertian
constraint only applies to the relay wall. Rather than reconstructing the geometry and BRDF of the
scene, our virtual cameras reconstruct phasor field irradiance from the scene towards our virtual
aperture as a function of position and time, analogous to their LOS counterparts. The reconstructed
signal thus corresponds to the averaged irradiance for the entire aperture. This is illustrated in Fig-
ure S.2. Prior methods seek to reconstruct NLOS geometry, which requires correct modelling of
albedo, BRDF, occlusions, and interreflections, resulting in a nonlinear inverse problem3. In the
absence of such data from the hidden scene, these prior methods need to rely on simplifying as-
sumptions, thus limiting the range of scenes that can be reconstructed. Since our method does not
make any assumption about the surface properties of the hidden scene, the changes in material ap-
pearance do not significantly affect our irradiance reconstructions (see Results in Method section).
Simulations with varying BRDFs can be found in the Method Section.

Target

Virtual lens

Target
Reconstruc�on Reconstruc�on

Virtual lens

a b

Figure S.2: Light hitting the relay wall (in yellow) illuminates the target scene, and is scattered
and bounced back by unknown objects in the scene (in blue). a) When the target object is perfectly
Lambertian, it bounces light back to the entire captured surface of the relay (our virtual lens); our
virtual imaging system then focuses the incoming irradiance. b) Increasingly specular surfaces
may cause the returning light to be reflected towards specific directions; however, like a conven-
tional camera, as long as such reflected light hits some area of the virtual lens, it will be imaged
correctly, with a potential spatial resolution loss if few light sources are used. Increasing the num-
ber of light sources allows to obtain a progressively more complete irradiance reconstruction and
improve resolution.
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C LOS Template Functions

In this section we show how to model the outgoing illumination wavefront P(xp, t), as well as
the image formation model Φ(·) for our example template LOS imaging systems, using standard
diffraction optics. We begin with some preliminary considerations regarding the phase transforma-
tion by an ideal lens, which is essential for deriving any arbitrary image formation model Φ(·). We
then derive P(xp, t) and Φ(·) for three example systems: (1) Conventional Photography Camera,
(2) Transient Camera, and (3) Confocal Time-Gated Camera.

C.1 Phase Operator of an Ideal Computational Thin Lens

We define an ideal lens as an element that focuses a planar wavefront into a point at the focal
distance f from the lens, on the optic axis. This is equivalent to converting light coming from
a point xf and turning it into a planar wave, i.e., a wave with a phase that is independent of the
position xl on the plane of the lens. Light leaving from a point at xf creates spherical wavefronts,
i.e., the phase at a plane perpendicular to the z-direction at a distance f from xf is

φw(xl, xf ) = eiω
|xf−xl|

c . (S.10)

The lens phase shift, φl(xl, xf ), has to cancel this phase term, and thus the lens acts on the wavefront
of a monochromatic wave Pω(x) as

P ′ω(xl, t) = Pω(xl, t) · φl(xf , xl). (S.11)

where P ′ω(xl, t) is the wavefront after the lens and φl(xl, xf ) = e−iω |xf−xl|/c.

To understand how this lens affects a general broadband signal, consider a wave P(x, t) expressed
as a superposition of monochromatic waves:

P(x, t) =

∫ +∞

−∞
Pω(x, t)

dω

2π
=

∫ +∞

−∞
P0,ω(x)eiωt

dω

2π
; (S.12)

Considering xf and xl ∈ L and applying the phase shift of the lens to this wavefront, we find

P(x, t)φl(xl, xf ) =

∫ +∞

−∞
P0,ω(x) ei(ωt−ω

|xf−xl|
c

)dω

2π
= P(x, t− |xf − xl|

c
). (S.13)

Like the RSD propagation, the phase shift of an ideal lens can thus also be described as a shift in
time.

8



System P(xp, t)
(1) Photo Camera (ambient light) eiωt

(2) Transient Camera (pulsed point light) eiωtδ(xp − xls)e−
(t−t0)

2

2σ2

(3) Confocal Time-Gated Camera (pulsed focused light) eiω(t−
1
c
|xv−xp|)e−

(t−t0−
1
c |xv−xp|)2

2σ2

Table S.2: Illumination wave functions for different light sources, used in our three example imag-
ing systems.

System Φ(P(xc, t))
(1) Photo Camera |

∫
C
P(xc, t− 1

c
|xv − xc|)dxc|2 = |Rxv(P(xc, t))|2

(2) Transient Camera |
∫
C
P(xc, t− 1

c
|xv − xc|)dxc|2 = |Rxv(P(xc, t))|2

(3) Confocal Time-Gated Camera |
∫
C
P(xc,−1

c
|xv − xc|)dxc|2 = |Rxv(P(xc,−1

c
|xv − xc|))|2

Table S.3: Imaging operators to implement our three example imaging systems. The evaluation
functions essentially describe the imaging transform of a lens with the resulting image being read
out at different times with respect to the illumination.

Imaging with a lens: A lens that images a point xv onto a sensor pixel xr can be described as
a combination of two co-located lenses. One to collimate the light from xv, and one to focus it
onto xr. This results in a phase shift φ(xl) = −ω |xv−xl|−|xl−xr|

c
. In the camera, this is followed by a

propagation from the lens to the sensor. If we use Equations S.9 and S.13 for the propagation and
lens, we obtain:

P(xr, t) =

∫
L

P(xl, t− |xv − xl|+ |xl − xr| − |xl − xr|)dxl

=

∫
L

P(xl, t− |xv − xl|)dxl

=Rxv(P(xl, t)),

(S.14)

where the 1/r factor in the RSD propagator can be omitted. The imaging lens thus effectively
propagates the field from the aperture xl back into the scene.

C.2 Example Projector and Camera Functions

Our theoretical model allows us to implement any arbitrary (virtual) camera system by defining
the projector function P(xp, t) and imaging operator Φ(·). Methods for modeling such function
using Fourier optics are available in the literature4. In our work we implement three of them: (1)
Conventional Photography Camera, (2) Transient Camera, and (3) Confocal Time-Gated Camera.
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Each has capabilities never before demonstrated in NLOS imaging. The derived P(xp, t) and Φ(·)
functions are listed in Tables S.2 and S.3.

(1) Our first example is a conventional photography camera system with a P-field monochro-
matic illumination source at frequency ω. It reconstructs the hidden scene with low computational
effort. Like a LOS photography camera it does not require knowledge of the position or timing of
the light source.

In other words, the reconstruction is independent of the position of xp, which reduces the need of
careful calibration of the laser positions in the relay wall. Since our illumination for this system
is ambient light, the projector function P(xp, t) can be anything. However, like in conventional
imaging, the resolution of the image is determined by the temporal bandwidth of P(xp, t), corre-
sponding to the wavelength in the conventional camera. We thus choose a function with a short
phasor field wavelength: P(xp, t) = eiωt. The camera operator is represented by a lens that cre-
ates an image on a set of detector pixels that record the absolute value squared of the field. Im-
plementing the lens using the time shift property or the RSD propagator (Equation S.14) yields
Φ(P(xc, t)) = |

∫
C
P(xc, t− 1

c
|xv − xc|)dxc|2 = |Rxv(P(xc, t))|2. Note that this expression is

constant with time, just like the intensity in the sensor of a LOS photography camera, so it can be
evaluated at any time t.

(2) The second example is a NLOS transient camera system. Like its LOS counterpart5, this
camera captures the propagation of light through the scene, revealing complex multibounce light
transport phenomena. As a consequence this virtual camera may be used to identify direct and
global components of such light transport. In this case we model a monochromatic point light
source at a single point xls which illuminates the scene with a short gaussian shape flash of σ = 6λ

2.36

at time t0. The illumination function is thus P(xp, t) = eiωtδ(xp − xls)e
−(t−t0)

2

2σ2 . The camera is the
same as the conventional photography camera, except that the reconstructed intensity on the sensor
now depends on time t, capturing frames at each tf . We assume that the camera focus follows the
light pulse.

(3) Last, we implement a confocal time-gated imaging system, which images specific voxels xv
of a volumetric space, illuminated with a focused ultrashort pulse of width σ.

Note that our virtual imaging system is confocal, but the data for H is not necessarily captured
with a confocal arrangement as in prior NLOS work2. Our illumination is a light pulse focused

on a voxel xv: P(xp, t) = eiω(t−
1
c
|xv−xp|)e−

(t−t0−
1
c |xv−xp|)2

2σ2 . In the design of this system we can
choose the phasor field pulse width σ. As this width increases, the depth resolution of the virtual
imaging system worsens, although the signal-to-noise ratio improves. In practice, we found that
a pulse full width at half maximum of about six wavelengths σ = 6λ

2.36
yields the best results.

Longer pulses are effective for canceling more noise in the reconstruction. The camera is again
implemented as an imaging lens, like the cases above. However, in this case the camera needs
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to focus on the same point xv as the light source. Since we are only concerned with the 3rd
bounce return directly reflected by a scene surface at xv, we evaluate the signal only at a time
t = −1

c
|xv − xc|, when 3rd-bounce light from this location is seen. This results in a function

Φ(P(x, t)) = |
∫
C
P(xc,−1

c
|xv − xc|)dxc|2 = |Rxv(P(xc,−1

c
|xv − xc|))|2.
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D Implementation Details of the RSD Solvers

Here we describe an RSD diffraction integral solver to implement our conventional photographic
camera system, and a backprojection solver for the transient confocal systems (refer to Sec-
tion C.2). Note that both solvers can be applied to any of the systems.

D.1 Conventional Photography Camera using RSD

Using Equation S.1 we write

I(xv) = Φ

(∫
P

[P(xp, t) ? H(xp → xc, t)] dxp
)

= Φ

(∫
P

∫ +∞

−∞
P(xp, t− τ)H(xp → xc, τ)dτ dxp

)
. (S.15)

Plugging in the terms from Tables S.2, and S.3 for the conventional photographic camera, we find:

I(xv) =

∣∣∣∣Rxv

(∫
P

[
eiωt ? H(xp → xc, t)

]
dxp
)∣∣∣∣2 . (S.16)

After this convolution, each time response can be represented entirely by a single complex number.
The result is the phasor field (complex amplitude) at the virtual aperture, which is propagated back
into the scene using an RSD propagator.

Solving the RSD propagator numerically for each voxel in the scene would be computationally
expensive. For a voxel space of side-lengthN , andN∗N points xc, the complexity isN5. However,
there are multiple algorithms that solve the RSD integral for a plane of voxels as a 2D convolution.
For all planes making up the reconstruction space this results in a much lower complexity of
N3 log(N). While there are efficient solvers for the exact RSD7, we rely on the well-known Fresnel
approximation4, to implement an efficient solver.

The Fresnel diffraction from a source plane S to a parallel destination plane D at distance z can be
approximated as

P(ud, vd, z) ≈ γ
eikz

z

∫∫
S

P(us, vs)e
ik

(ud−us)
2
+(vd−vs)

2

2z dusdvs, (S.17)

where u and v are plane coordinates, and subscripts s and d refer to the coordinates in the source
and destination planes, so that xs = [us, vs, 0] ∈ S and xd = [ud, vd, z] ∈ D. This can be

interpreted as a 2D spatial convolution with a kernel K(u, v) = γ e
ikz

z
eik

u2+v2

2z .
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This approximation can be used for the RSD propagator in all our camera operators. The criteria
for the validity of the Fresnel approximation is well known4 and given by

d4

4L3λ
<< 1, (S.18)

where d is the effective aperture radius of the virtual camera, L is the distance between the aperture
and the focal plane, and λ is the wavelength.

D.2 Confocal Time-gated System using Backprojection

Plugging in the corresponding terms from Tables S.2, and S.3 for the confocal time-gated imaging
system in Equation S.15 we obtain

I(xv) = Φ

(∫
P

∫ +∞

−∞
eiω(t−τ−

1
c
|xv−xp|)e−

(t−τ−t0−
1
c |xv−xp|)2

2σ2 H(xp → xc, τ)dτ dxp
)

(S.19)

=

∣∣∣∣∫
C

∫
P

∫ +∞

−∞
eiω(−

1
c
|xv−xc|−τ− 1

c
|xv−xp|)e−

(− 1
c |xv−xc|−τ−t0−

1
c |xv−xp|)2

2σ2 H(xp → xc, τ)dτ dxp dxc
∣∣∣∣2 .

There are multiple ways of solving this expression. We can simply numerically compute the inte-
grals, or we can re-write the expression to include backprojection or diffraction operators. This is
desirable since fast methods to execute these operators exist.

Let us first write the expression as a backprojection. We introduce a shifted time ts = −1
c
|xv −

xc| − 1
c
|xv − xp| to obtain

Φ(P(xc, t)) =

∣∣∣∣∫
C

∫
P

∫ +∞

−∞
eiω(ts−τ)e−

(ts−τ−t0)
2

2σ2 H(xp → xc, τ)dτ dxp dxc
∣∣∣∣2 . (S.20)

We break up this expression into two steps. First we perform a convolution on all the collected
time responses in H to obtain an intermediate result H ′(xp → xc, t)

H ′(xp → xc, t) = (eiωte−
(t′−t0)

2

2σ2 ) ? H(xp → xc, t′), (S.21)

followed by shifting and summing the results:

I(xv) =

∣∣∣∣∫
C

∫
P

H ′(xp → xc,−
1

c
|xv − xc| −

1

c
|xv − xp|)dxp dxc

∣∣∣∣2

≈

∣∣∣∣∣∣
∑
xc∈C

∑
xp∈P

H ′(xp → xc,−
1

c
|xv − xc| −

1

c
|xv − xp|)

∣∣∣∣∣∣
2

. (S.22)

where the second term is a backprojection, for which efficient implementations exist1.
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D.3 Transient Camera using Backprojection

Last, we derive our NLOS transient system. Operating similarly to the confocal time-gated system,
by plugging in the corresponding terms from Tables S.2, and S.3 in Equation S.15 we obtain:

H ′(xp → xc, t) = (eiωtδ(xp − xls)e−
(t′−t0)

2

2σ2 ) ? H(xp → xc, t′) (S.23)

and

I(xv, t) =

∣∣∣∣∫
C

H ′(xp → xc, t−
1

c
|xv − xc| −

1

c
|xv − xls|)dxc

∣∣∣∣2 . (S.24)

Besides the use of only one illumination point xp = xls, this reconstruction differs from the confo-
cal system in that it depends on time t. The reconstruction is 4-dimensional, resulting in a video
of the light propagation in the 3D reconstruction space. To reduce computational cost, we can
optionally locate empty voxels by first using our confocal imaging functions.
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