Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Improving the quality of machine learning in health applications and clinical research

For machine learning developers, the use of prediction tools in real-world clinical settings can be a distant goal. Recently published guidelines for reporting clinical research that involves machine learning will help connect clinical and computer science communities, and realize the full potential of machine learning tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development cycle of ML/AI solutions for clinical care.

References

  1. Sounderajah, V. et al. Nat. Med. 26, 807–808 (2020).

    Article  Google Scholar 

  2. Liu, X. et al. Nat. Med. 26, 1364–1374 (2020).

    Article  Google Scholar 

  3. Cruz Rivera, S. et al. Nat. Med. 26, 1351–1363 (2020).

    Article  Google Scholar 

  4. Moons, K. G. M. et al. Ann. Intern. Med. 162, W1–W73 (2015).

    Article  Google Scholar 

  5. Topol, E. J. Nat. Med. 25, 44–56 (2019).

    Article  Google Scholar 

  6. Ben-Israel, D. et al. Artif. Intell. Med. 103, 101785 (2020).

    Article  Google Scholar 

  7. Chalmers, I. & Glasziou, P. Lancet 374, 86–89 (2009).

    Article  Google Scholar 

  8. Rajkomar, A., Dean, J. & Kohane, I. N. Engl. J. Med. 380, 1347–1358 (2019).

    Article  Google Scholar 

  9. Liu, X. et al. Lancet Digit. Health 1, e271–e297 (2019).

    Article  Google Scholar 

  10. Wynants, L. et al. BMJ 369, m1328 (2020).

    Article  Google Scholar 

  11. Gupta, R. K. et al. Preprint at https://doi.org/10.1101/2020.07.24.20149815 (2020).

  12. Király, F. J., Mateen, B. & Sonabend, R. Preprint at https://arxiv.org/abs/1812.07519 (2018).

  13. Freiman, J. A., Chalmers, T. C., Smith, H. & Kuebler, R. R. in Medical Uses of Statistics (eds Bailar, J. C. III & Mosteller, F.) 357–373 (NEJM, 1992).

  14. Collins, G. S. & Moons, K. G. M. Lancet 393, 1577–1579 (2019).

    Article  Google Scholar 

  15. Glasziou, P. et al. Lancet 383, 267–276 (2014).

    Article  Google Scholar 

  16. Vollmer, S. et al. BMJ 368, l6927 (2020).

    Article  Google Scholar 

  17. Lipton, Z. C. & Steinhardt, J. Preprint at https://arxiv.org/abs/1807.03341 (2018).

  18. Wagstaff, K. L. in Proc. 29th Int. Conf. Machine Learning 529–536 (ICML, 2012).

  19. Vollmer, S. et al. Preprint at https://arxiv.org/abs/1812.10404 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian J. Vollmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateen, B.A., Liley, J., Denniston, A.K. et al. Improving the quality of machine learning in health applications and clinical research. Nat Mach Intell 2, 554–556 (2020). https://doi.org/10.1038/s42256-020-00239-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-020-00239-1

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics