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The importance of resource awareness in 
artificial intelligence for healthcare

Zhenge Jia    1, Jianxu Chen    2, Xiaowei Xu    3  , John Kheir4, Jingtong Hu5, 
Han Xiao6, Sui Peng7, Xiaobo Sharon Hu1, Danny Chen1 & Yiyu Shi    1 

Artificial intelligence and machine learning (AI/ML) models have been 
adopted in a wide range of healthcare applications, from medical image 
computing and analysis to continuous health monitoring and management. 
Recent data have demonstrated a clear trend that AI/ML model sizes, as well 
as their computational complexity, memory consumption and the scale 
of the required training data and costs, are experiencing an exponential 
increase. The developments in current computing hardware platforms, 
storage infrastructure, networking and domain expertise cannot keep up 
with this exponential growth in resources demanded by the AI/ML models. 
Here, we first analyse this recent trend and highlight that there are resource 
sustainability issues in AI/ML for healthcare. We then present various 
algorithm/system innovations that will help address these issues. We finally 
outline future directions to proactively and prospectively tackle these 
resource sustainability issues.

With the ever-growing volume of available data in the biomedical 
domain, artificial intelligence and machine learning (AI/ML) models are 
showing great potential across a wide range of healthcare applications, 
from medical image computing and analysis1–4 to implantable health 
monitoring5. The performance of AI/ML models has been demonstrated 
to be comparable to or even superior to human expert performance 
in various healthcare applications6,7. The adoption of AI/ML models 
in healthcare has substantially reduced labour costs and freed doc-
tors from tedious manual work8. With increasing computing power 
and the ever-growing available healthcare data, AI/ML models, while 
achieving better inference performance, are currently experiencing an 
exponential increase in terms of their size and demand for resources.

Unfortunately, with the exponential growth in the size of mod-
els, as well as the associated increase in computational complexity 
and rapid growth in the volume of health data, the development of 
accurate AI/ML models, which often consume extensive resources 

for training as well as testing, is facing critical sustainability issues in 
relation to energy, storage, computing power, networking and domain 
expertise. For healthcare applications with access to powerful comput-
ing infrastructure, the energy consumed in the operation of large AI/
ML models may also be subject to unsustainability issues as a result 
of the slowdown in advances in hardware platforms. As model sizes 
grow, the amount of health data required for training will also increase 
dramatically. For healthcare applications for which cloud servers are 
easily accessible through network connections, a storage sustainability 
issue arises in relation to upgrading and maintaining current storage 
infrastructures, with the high associated costs (when budgets are often 
limited). For applications that are restricted to edge computation of 
embedded hardware, the energy, computing power, networking and 
storage sustainability issues are even more severe as there are already 
constraints in power and areas such as security, privacy and latency. 
In addition to hardware-related sustainability issues, unsustainable 
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Energy consumption outpaces efficiency gains
We have examined data from recent years regarding the capacity of 
state-of-the-art (SOTA) deep neural networks for healthcare applica-
tions, as well as energy efficiency performances of hardware platforms. 
The results show that an energy sustainability issue exists between 
the increasing model complexity required for better accuracy and 
the advances in the hardware architectures needed to accommodate 
deep models.

Figure 1a shows that the memory energy efficiency of hardware 
platforms is not keeping up with the increasing sizes of networks, 
resulting in a growing gap between the two. Representative networks 
were chosen from two prevalent healthcare tasks (medical image seg-
mentation and biomedical information processing). These two tasks 
are representative examples of fundamental information extraction 
processes in the healthcare field, from visual (for example, medical 
images) and textual (for example, electronic healthcare records) 
modalities10. The dashed lines in Fig. 1a show that the number of param-
eters of deep neural networks has increased exponentially over the past 
few years. The solid lines in Fig. 1a present the energy efficiency of static 
random-access memory (SRAM) and dynamic random-access memory 
(DRAM). Data moving dominates the energy consumption of hardware 
platforms, and the total amount of energy consumed by memory 
is directly proportional to the number of deep model parameters11. 
From 2011 to 2017, the energy efficiency of DRAM, including double 
data rate, low-power double data rate, graphics double data rate and 
three-dimensional (3D) DRAM, increased exponentially, according to 
Moore’s law-based complementary metal–oxide–semiconductor scal-
ing11,12. Since 2017, DRAM has not experienced a dramatic improvement 
in terms of energy efficiency. The energy efficiency trend of SRAM 
is typically bounded by Moore’s law, because SRAM is realized with 
complementary metal–oxide–semiconductor transistors11. The trend 
lines in Fig. 1a show that improvements in memory energy efficiency 
cannot keep up with the increasing sizes of deep models in healthcare. 
Accordingly, with the rising memory energy demand, sustainability 
issues will arise by exceeding the limited energy budget for network 
inference and training.

domain expertise in health data labelling has also restricted the devel-
opment of AI/ML in healthcare.

Although there have been attempts to address certain types of 
resource constraint in AI/ML for healthcare, the proposed methods 
have mostly been devised to ‘passively’ deal with specific resource con-
straint issues. Few known methods have been systematically designed 
to proactively tackle resource sustainability issues for general current 
or future developments. We believe that addressing bottlenecks in 
algorithm and system design with sustainability awareness and promot-
ing collaborations between academia and industry are key to resolve 
emerging resource sustainability issues. In this Perspective, we first 
demonstrate that resource sustainability issues are commonplace 
in AI/ML methods for healthcare applications, then discuss various 
algorithms and system approaches that can help alleviate these sus-
tainability issues. Finally, we outline future directions for proactively 
and prospectively tackling these issues.

Resource sustainability issues
Sustainability is critical for AI/ML applications in healthcare. In previous 
developments of AI/ML healthcare systems, resource sustainability 
issues were often neglected, and it was implicitly assumed that there 
would always be adequate resources for future AI-based health data 
analysis. However, for AI/ML-based health applications where powerful 
servers and supercomputers are readily accessible, the current technol-
ogy evolution trends may continue, but at the cost of unsustainable 
energy consumption. According to estimates, carbon emissions must 
be reduced by half over the next ten years to prevent an increase in 
the frequency of natural disasters9. For those applications that have 
to be conducted on the edge due to security, privacy and/or real-time 
constraints, the push for much more advanced deep learning tech-
nologies will very soon hit the wall in terms of unsustainable energy 
budget, computing power, network bandwidth, storage capacity and 
so on. Furthermore, the shortage of healthcare domain expertise and 
expert time in diagnosing, labelling and cross-validating diagnoses will 
become more severe as the volume of health data increase. We will focus 
on these critical resource sustainability issues in AI/ML for healthcare.
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Fig. 1 | Unsustainable energy resource issues caused by the gap between 
model complexity and efficiency. a, Dashed lines show the trend of the number 
of parameters versus years for representative AI/ML models in medical image 
segmentation (from 7 million parameters with U-Net73 to 200 million parameters 
with Swin Transformer74) and biomedical information processing (from 2 
million parameters with autoencoder eNRBM75 to 8.9 billion for BERT-based 
GatorTron76), respectively. Solid lines show the memory energy efficiency of 
DRAM and SRAM. Memory efficiency cannot accommodate the exponentially 
increasing number of memory accesses under an unsustainable energy budget. 

b, Dashed lines show the trend of the number of floating point operations versus 
years for representative AI/ML models in medical image segmentation (from 
4.84 GFLOPs for U-Net73 to 362.1 GFLOPs for SETR77) and biomedical information 
processing (from 88 GFLOPs for BioBERT78 to 18,000 GLOPs for GatorTron76), 
respectively. The solid line shows the trend of computation energy efficiency 
of SOTA GPUs from 2011 to 2022. Computation energy efficiency cannot 
accommodate the exponentially increasing number of required floating point 
operations. Only representative AL/ML models are annotated each year. Both y 
axes are in log scale. Data are taken from refs. 11–13,21,73,75–106.
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An energy sustainability issue also arises in relation to the expo-
nentially increasing computational demands of AI/ML models in com-
parison to the computation energy efficiency, which shows relatively 
slow improvement (Fig. 1b). The dashed lines in Fig. 1b show that the 
number of giga floating point operations (GFLOPs) of networks in 
medical image segmentation and biomedical information processing 
experienced an exponential increase from 2015 to 2022. A correspond-
ing trend is shown in the advancement of hardware efficiency in com-
putation (solid line in Fig. 1b). The efficiency of the float32 precision 
format of SOTA graphics processing units (GPUs) in desktops and serv-
ers from each year is reported. Units of GFLOPs per joule are utilized as 
a measure of hardware computation energy efficiency. Figure 1b shows 
that the trend of computation energy efficiency improvement cannot 
keep up with the increasing trend of the computational complexity of 
deep models in either the medical image segmentation or biomedical 
information processing tasks. Although the energy consumption of a 
single inference may not grow at the same rate as the number of model 
parameters, thanks to systematic optimization13, the total energy 
consumption of frequent and multiple inferences in healthcare tasks 
remains unsustainable with the limited energy budgets available.

Furthermore, training large AI models requires massive amounts of 
energy, substantially higher than for simply performing inference14–16. 
For example, full training of a BERT model consumes ~103,593 kWh of 
electricity9. The use and deployment of AI models can also contribute to 
carbon emissions through the use of energy-intensive hardware, such as 
GPUs and tensor processing units (TPUs). To obtain a model architecture 
for better accuracy performance, running a neural architecture search 
over all BERT model parameters would consume even more electricity 
(656,347 kWh, which is as much as six times that for full training of a 
BERT model17,18) and cause more carbon emissions (626,155 pounds CO2 
emissions, as much as the lifetime emissions of five cars9,18,19).

As shown in Fig. 1, it is clear that the energy efficiency of leading 
hardware (that is, memory and computing capacity) cannot keep up 
with the deep model complexity required for better accuracy and 
broader usage. Simply increasing the number of hardware platforms to 
accommodate more complex deep models is not a sustainable solution 
due to the limited energy budget.

Computing power demand outpaces performance  
density gains
The use of AI/ML in healthcare requires large amounts of computing 
power, and this can have substantial sustainability implications. The 
rapid development of AI/ML models, with their growing computa-
tional demand, has led to a constant need for more powerful hardware, 
such as GPUs, to accommodate this increasing demand for computing 
power. As shown in Fig. 1b, the number of floating point operations 
performed by one inference increases from 4.84 GFLOPs for U-Net to 
18,000 GFLOPs for GatorTron. The required computing power fur-
ther increases in scale with the increasing number of model inferences 
conducted for various tasks. Training AI/ML models is an even more 
computing-intensive task. For example, it requires 1.9 × 105 peta FLOPs 
(PFLOPs) to train a BERT model20 for biomedical information processing 
and 3.1 × 108 PFLOPs to train the GPT-3 model utilized for interactive 
computer-aided diagnosis21,22. A lack of computing power would be an 
obstacle to training an AI/ML model or conducting model inference, 
especially given the current pursuit of large models, further hindering 
technological progress.

The rapidly growing computing power demand for AI/ML model 
development and deployment has led to an unsustainable situation 
where simply increasing the number of hardware platforms cannot 
address the issue of a limited budget, as shown in Fig. 2. Figure 2a 
depicts how the performance density (the computing capacity per 
unit area, in giga floating point operations per second (GFLOPS) per 
square millimetre) of leading GPUs has gradually improved over the 
past few years. From 2015 to 2022, there has been a great improvement 
in the performance density, which improves by around tenfold, with 
the process size scaling down. However, the growth rate still cannot 
catch up with the growth rate of AI/ML model computational com-
plexity. This has resulted in an exponentially increasing computation 
density demand (that is, the time and chip area product to complete 
one model inference on the leading GPU with the highest performance 
density), as indicated by dashed lines in Fig. 2a. The computation 
density demand is approximately obtained by dividing the total num-
ber of GFLOPs of a model by the performance density of the lead-
ing GPU (GFLOPS mm−2) in the same year the model was developed.  
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Fig. 2 | Unsustainable computing power resource issues caused by the 
gap between model complexity and computing capacity. a, The solid line 
shows the trend of the increasing performance density of leading GPUs from 
2015 to 2022. Dashed lines show the trend of the time and chip area product 
of the SOTA AI/ML model inference conducted on the leading GPU in medical 
image segmentation (orange) and biomedical information processing (red), 
respectively. An exponential increase in computing time or chip area over time is 
needed for both tasks over the past five years. b, The solid line shows the trend of 

the increasing performance cost of the leading GPUs from 2015 to 2022. Dashed 
lines show the trend of the time and expense product of the SOTA AI/ML model 
inference conducted on the two healthcare tasks. An exponential increase in 
computing time or expense is needed for both tasks over the past five years. 
Both plots show that computing power cannot keep up with the increasing 
computational demand (in terms of chip area, expense and time) of AI/ML 
models in healthcare. Only the leading GPUs on desktop or servers for each year 
are selected. The y axis is in log scale. Data are taken from refs. 11–13,21,73,75–107.
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The same applies for performance cost (the computing capacity per 
unit expense in GLOPS per US dollar), as shown in Fig. 2b. The price 
of each year’s leading GPU is set to match the buying power in Janu-
ary 2023 by considering inflation, using the tool provided by the US 
Bureau of Labor Statistics23. As the performance cost of leading GPUs 
increases, the computation expense demand (the time and expense 
product to complete one model inference on the leading GPU with 
the lowest performance cost) grows exponentially in both healthcare 
tasks, as indicated by dashed lines. The computation expense demand 
is approximately obtained by dividing the total number of GFLOPs of 
a model by the performance expense of the leading GPU (GFLOPS $−1) 
in the same year the model was developed.

Accordingly, there is a sustainability issue in that the computing 
power of leading hardware platforms cannot keep up with the rap-
idly increasing computation complexity of AI/ML models in health-
care. Simply increasing the number of GPUs, performance density or 
expense budget is not a sustainable solution. Furthermore, computing 
hardware platforms are generally bounded by Moore’s law12, and the 
computing capacity of SOTA GPUs may not increase with an expo-
nential growth rate when Moore’s law ends as we approach the limit 
of process size11.

Data storage outpaces infrastructure development
Along with the increasing model complexity, biomedical data involved 
in AI/ML model development have also experienced sharp growth in 
terms of volume and resolution. We now examine recent medical image 
datasets utilized in deep model training. The results show that the stor-
age sustainability issue arises in the current storage infrastructure of 
research centres and medical institutes.

Figure 3 demonstrates a dramatic increase in storage requirements 
for medical image data. In particular, the solid line in Fig. 3 shows the 
number of pixels/voxels in a single medical image from representative 
datasets used in deep model inference. Recent advances in biomedical 
image acquisition technologies have led to an upscale in image resolu-
tion. For example, the size of three-dimensional (3D) micro-computed 
tomography (micro-CT) images of mouse skull cartilages and bones 
has increased from 200 × 5,122 to 1,500 × 20,002 voxels, requiring 

around 12 GB to store a single 3D image1. As for the resolution of 2D 
images, in the ACHIGMU (Affiliated Cancer Hospital and Institute of 
Guangzhou Medical University) dataset24, a single histopathologi-
cal image is scanned at ×20 magnification with an average size of 
68,096 × 125,440 pixels, which requires ~16.3 GB for a single image. In 
addition, data volumes utilized in AI/ML healthcare applications have 
also become overwhelming. The dashed line in Fig. 3 demonstrates the 
volumes of representative datasets utilized in deep model training, 
showing that the memory capacity required to store datasets (utilized 
in deep model training) has increased from 1.7 GB (for the dataset X 
rays-Bone25) to 34,779 GB (for the dataset WSIs-Lung26). With increas-
ing model sizes, the required data volume for properly training a deep 
model is also increasing. The multimodal imaging of proteomics27, cell 
segmentation28, super high-resolution 3D imaging1–3 and the enormous 
amount of CT scan images29 are further pressing the storage resources 
needed for cloud computing infrastructures. For example, the cancer 
prognostication described in ref. 30 proposes a deep learning-based 
multimodal fusion algorithm that uses both whole slice images and 
molecular profile features (that is, mutation status, copy-number vari-
ation, RNA sequencing expression), which amounts to over 7,000 GB 
in terms of data volume.

Furthermore, existing storage infrastructures may not be able 
to keep up with the increasing storage capacity required by medi-
cal image datasets. Health institutes and universities often provide 
two tiers of storage: locally maintained on-campus network-attached 
storage and storage infrastructure provided and maintained by cloud 
storage vendors31. The cost of on-campus network-attached storage 
can be up to US$3,000 per terabyte per year, and the cost of stor-
age on high-performance computation cluster facilities can be up 
to US$3,600 per terabyte per year31. What is worse, universities and 
institutes do not generally offer more than a few terabytes of storage. 
With the increasing data volume and the total number of datasets for 
model training, the existing storage infrastructure is rather impracti-
cal and unsustainable in terms of memory capacity and budget. The 
limited storage capacity will greatly obstruct AI/ML development in 
healthcare. When it comes to cloud storage, integrating commercial 
cloud storage infrastructure into the AI/ML development process is not 
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a simple task due to concerns regarding the transparency, privacy and 
security of sensitive health data7. Although commercial cloud vendors 
can provide sufficient storage capacity, there is a risk of exposure and 
misuse of sensitive data without additional legislation and regula-
tion in place for the third-party cloud storage platforms used for AI in 
healthcare7,32. As such, as of today, the utilization of commercial cloud 
storage for healthcare data is rare.

Data transmission outpaces network infrastructure 
development
The integration of AI/ML into healthcare systems generates large 
amounts of data and AI/ML models that need to be transmitted 
between devices and servers for a range of purposes, such as remote 
diagnosis33 and collaborative learning34. The transmission efficiency 
of network communication infrastructure is particularly important in 
healthcare application scenarios where real-time data transmission is 
critical for patient care. Bandwidth limitations can result in delays or 
loss of data, which can have serious consequences for point-of-care  
patient outcomes.

This process thus comes with a substantial sustainability chal-
lenge related to network infrastructure. The network infrastructure in 
healthcare facilities is not designed to handle the massive amounts of 
data that deep learning requires35. A lack of high-speed data transmis-
sion required by real-time decision-making is putting further pressure 
on the current networking infrastructure, resulting in issues such as 
excessive latency.

Accordingly, the sustainability of network communication infra-
structure is a critical issue in AI for healthcare. It requires immediate 
attention and efforts towards developing sustainable solutions to 
establish efficient communication while ensuring the effective pro-
cessing and analysis of healthcare data using AI/ML.

Data preparation effort outpaces experts’ load
In healthcare applications in particular, data preparation (that is, 
annotation and label verification) is a critical process to guarantee 
the performance of an AI/ML model and establish the trust of users and 
doctors. Often under-appreciated by AI/ML developers, data annota-
tion and verification for AI/ML model training is a labour-intensive and 
time-consuming task, can take up to several hours for a single image, 
and results in expert load sustainability issues, as shown in Fig. 4.

As AI/ML models with an increasing number of parameters are 
adopted in healthcare applications, more images are required for 
model training to achieve better accuracy. As shown in Fig. 4a, the 
number of X-ray, CT and magnetic resonance imaging (MRI) images 
utilized in AI/ML model training is exponentially increasing. Along-
side the explosively increasing number and size of medical images 
utilized in AI/ML model training, the time spent by domain experts on 
data preparation of a medical image has remained constant for years 
as a result of mature diagnostic procedures36,37. For a sophisticated 
case, a domain expert will take a long time to complete a specific 
diagnostic image analysis for interpretation and annotation verifi-
cation. As shown in Fig. 4b, detailed manual contouring of COVID-19  
infection regions on one chest CT scan can take 187 ± 38.5 min  
(ref. 38), and labelling neuroblastic tumours manually requires a mean 
time of 56 min per case in MRI images39. Indeed, current qualified 
domain experts cannot keep up with the data preparation demand. 
The orange dashed line with diamond-like points in Fig. 4a demon-
strates a fairly small increase in the number of registered radiologists 
in the USA, from 36,000 to 41,000, in the past ten years40. This slow 
growth is due to the long period of training time required to become 
a qualified domain expert.

The total load of all domain experts devoted to labelling and veri-
fication cannot keep up with the explosively increasing number of 
medical images needed for training. This could lead to the waste of 
the abundant medical data made available by advances in healthcare 

technologies, which could have been effectively used to boost very 
large-scale deep learning models. Limited domain expertise can also 
potentially lead to biased models if only a few people contribute to 
training dataset preparation.

Resource sustainability issues considered from lifecycle 
perspective
It is worth noting that the costs and benefits associated with develop-
ing and deploying AI systems are not restricted to a single stage such 
as the training or testing phase. Rather, they span from the design 
and development stages all the way through to adaptation and imple-
mentation, and may continue to evolve with each subsequent use 
or contribution. To assess the resource impact of an AI system, it is 
important to consider its entire lifecycle, taking into account the dif-
ferent stages and their associated costs. For example, during the early 
stages of model development, resources such as energy, computing 
power, domain expertise and time may be heavily invested in failed 
experiments and testing with various libraries. As the model evolves 
into a prototype, testing, software, hardware and computational 
resources become increasingly focused on reliability, stability and 
generalizability. Once the system is deployed to users, additional 
resource costs are incurred to enable efficient human–machine col-
laboration, potential domain adaptation and/or model upgrade. 
These may further exaggerate the sustainability issues and require 
a holistic approach to consider the resource sustainability of an AI 
system over its entire lifecycle.

Resource sustainability issues considered in edge computing
The application of edge computing is gaining attention in AI for health-
care as it allows for data processing and analysis to be done closer to 
the source of data generation (for example, in implantable5 or wearable 
devices41) or at the point of care, rather than sending it to a centralized 
cloud server. This approach offers several benefits, including reduced 
latency, improved data privacy and security, and more efficient use of 
network bandwidth. However, resource sustainability issues would 
become more acute due to the stringent resource capability of these 
edge platforms. For example, the existing storage infrastructure of 
edge computing systems generally cannot accommodate the enor-
mous volume of healthcare data for on-device learning. On the other 
hand, frequent communication to acquire data would increase the 
burden on network bandwidth and edge device power consumption, 
and pose potential security risks. The computing power provided by 
these edge computing devices is also inherently limited due to physical 
size constraints and limited energy budgets. Therefore, as the prevalent 
AI models in healthcare sharply increase in size and require more data 
to feed, training the model or even performing inference locally will 
become prohibitively expensive in the near future.

In summary, sustainability issues are critical for AI in healthcare 
in relation to various types of resource. AI, on the other hand, has 
the potential to have a substantial positive impact on carbon emis-
sion reduction by enabling the electronic delivery of targeted clinical 
expertise needed in remote areas or underdeveloped regions so that 
healthcare providers can reduce travel. For example, AI-CHD42 has 
recently demonstrated its power in providing automatic diagnoses 
of congenital heart disease, which previously would have required 
radiologists with very specialized training.

Approaches to solving resource scarcity
The current solutions for addressing resource constraints in AI/ML 
for healthcare span the perspectives of algorithms and system opti-
mization.

Algorithm perspective
Domain adaptation to reduce resource consumption. In recent 
years, domain adaptation techniques have been applied to pretrained 
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models based on abundant health data to adapt the networks to down-
stream tasks. In this way, a pretrained model trained for one domain 
can be reused in another domain, with minimal energy, comput-
ing power and domain expertise costs for the model development 
process. As a result, an extensively pretrained network will require 
less training than if trained from scratch for a new healthcare appli-
cation. Hence, the amount of training and the number of labelled 
training samples will be reduced, and will cost less in terms of differ-
ent resources. In the medical image domain, the pretrain-finetune 
paradigm has been applied to electron microscopy data4 and mass 
spectroscopy43 by fine-tuning the pretrained model with a limited 
amount of task-specific data to adapt to the new domain. A novel 
method that learns to ignore the scanner-related features present in 
MRI images when performing domain adaptation for a multi-site MRI 
dataset has been presented44. In the physiological signal domain, the 
authors of ref. 45 proposed a model personalization method based on 
meta-learning and fine-tuning for personalized arrhythmia detection 
and human activities recognition. An on-device model personalization 
based on the generative adversarial network for ventricular arrhyth-
mia detection is proposed in ref. 46.

Model compression and architecture search to save resources. 
There are algorithms designed specifically to find tiny networks, thus 
using the least amount of parameters so as to reduce energy con-
sumption and storage in healthcare applications. For example, for 
medical image segmentation tasks, a compressed CeNN framework47 
has been devised to perform incremental quantization and early exit, 
which substantially reduces computational demands while maintain-
ing acceptable performance with a field-programmable gate array. A 
fairness-aware pruning strategy, FairPrune48, has been proposed to 
prune the network weights while maintaining the fairness and accuracy 
of medical image classification, and a network quantization method 
was proposed to reduce the model size to fit the constrained resources 
of edge devices for medical image segmentation49. There are also works 
in resource-aware neural architecture search to find the best-fit tiny 
network architecture for real-time electrocardiogram reconstruction50.

Self-supervised learning paradigm to reduce expertise involved. 
There are algorithms designed for self- and semi-supervised learning 
that reduce the dependency on expert annotation for model training. 
For example, a self-supervised learning strategy based on context 
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training. a, The unsustainable expert load issue caused by the gap between the 
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for annotation and interpretation. The solid orange, dash-dotted blue and dashed 
green lines respectively show the numbers of medical images in datasets of X-ray, 
CT and MRI modalities utilized in AI/ML model training over the past ten years. 
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catch up with the required annotation of medical images, training more qualified 
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datasets are annotated each year. The y axis is in log scale. Data are taken from refs. 
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restoration has been proposed to better exploit unlabelled images of 
CT scans and 2D ultrasound results51. A self-supervised learning method 
for MRI images was devised in which the network is trained using a 
contrastive loss on whether the scan is from the same person (that is, 
longitudinal) or not, together with a classification loss on predicting 
the level of vertebral bodies52. A novel multi-instance contrastive learn-
ing53 method that used multiple images of the underlying pathology 
was proposed to improve classification accuracy on dermatology and 
chest X-ray images. ConVIRT was proposed in ref. 54 to learn medical 
visual representations through naturally occurring paired descriptive 
text in an unsupervised way, which required only 10% of the labelled 
training data compared with the supervised learning approach, while 
achieving better performance. As for the physiological signal domain, 
the authors in ref. 55 proposed a contrastive learning approach, CLOCS, 
that enabled the model to learn representations across space, time and 
patients and achieved comparable atrial fibrillation detection accuracy 
but with 25% the labelling required by supervised training approaches. 
An intra–inter subject self-supervised learning model was presented 
in ref. 56 to effectively learn from intra–inter subject differences and 
achieved 10% improvement over supervised training, but required only 
1% of the labelled data.

System perspective
Federated learning to balance workload and resource consump-
tion. From the system perspective, federated learning has become 
prevalent in balancing the resources required in training by offloading 
the computational workload from a single central server to multiple 
servers or other edge devices with computing system development. 
Federated learning is a paradigm that addresses the problem of data 
governance by training a deep neural network collaboratively with-
out uploading data to a centralized server34. The training process of 
federated learning can occur locally at each participating site’s end, 
and only model characteristics (such as parameters and gradients) 
are transferred. In this way, the energy consumption and computa-
tional workload of deep learning-based analysis on overwhelming 
healthcare data could be properly managed by distributing the tasks 
among all participants, which alleviates the sustainability issues on 
the central server. Cross-institute federated learning is an emerging 
technique in the healthcare industry that enables multiple hospi-
tals or organizations to collaboratively train a global model without 
aggregating the raw data into a central server. This technique could 
preserve data privacy and further balance the workload of data pro-
cessing by avoiding the conventional centralized training paradigm. 
This learning paradigm in computing system development has been 
adopted in the medical domain on multi-site institutions’ servers34, 
and the global model being collaboratively trained by ten institutions 
reached 99% of the model quality achieved with centralized data. The 
work in ref. 57 shows that model training tasks can be offloaded across 
multiple institutions with real-world private clinical data while gener-
ating the model, demonstrating improved generalization. Clustered 
federated learning58, which offloads training tasks from servers to local 
edge devices, was proposed for an automatic COVID-19 diagnosis and 
resulted in performances comparable to those of the central baseline 
on X-ray and ultrasound datasets. The federated learning framework 
FedHealth41 was introduced to include wearable devices in collabo-
rative model training to build personalized models for Parkinson’s 
disease auxiliary diagnosis.

Decentralized storage system to mitigate the sustainability issue 
while preserving data privacy. To tackle the storage constraint, 
decentralized storage systems for medical data have been developed 
for healthcare applications. With advances in medical image acquisi-
tion techniques, image sizes have dramatically increased. Meanwhile, 
the amount of medical image data is growing quickly as the utilization 
of massive medical images for clinical decision support has grown.  

As a result, there is a big demand to provide highly scalable data man-
agement and sharing in AI/ML for healthcare. Decentralized storage 
systems have been applied in the field to substantially reduce the stor-
age overhead in the centralized cloud system. For example, a scalable 
and flexible decentralized medical image management system based 
on DCMRL/XMLStore and DCMDocStore has been devised59. A health-
care data-sharing scheme has also been proposed to enable efficient 
and secure medical data sharing via blockchain for a decentralized 
storage system60.

Outlook
Current attempts to tackle resource constraints in AI/ML for healthcare 
propose algorithm- and system-perspective optimizations. However, 
there is still a lack of sustainability awareness when developing systems 
and algorithms in AI/ML for healthcare. In this section we present an 
outlook for potential solutions for resource sustainability issues.

Cost-aware cross-layer co-design for AI/ML healthcare 
systems
It is well known that hardware and the performance of AI models, includ-
ing their accuracy61, confidence62 and even security63, are entangled. 
To enable efficient design space exploration, it is critical to develop a 
cross-layer co-exploration framework that spans hardware, algorithms 
and models to identify the best configurations of resource-sustainable 
solutions for healthcare applications64–67. In addition, a resource cost 
model is needed that accurately estimates or predicts resource con-
sumption in terms of different combinations of hardware/software 
resources, neural network components and algorithm design options 
for each specific AI/ML-based healthcare application68. Moreover, the 
prediction model should also be able to predict the cost to maintain 
sufficient resource availability in terms of energy, computing power, 
storage, networks, algorithms, domain expertise and data volumes 
for model upgrades or possible domain adaptation from a lifecycle 
perspective. AI/ML models can potentially help in making accurate 
predictions to reduce waste and carbon emissions. With the cost pre-
diction model and co-design framework, designers can customize the 
optimization goals in terms of a newly updated infrastructure, specific 
resource budget and other optimization criteria for the entire lifecycle.

Consensus-based distributed learning
A novel consensus-based distributed learning framework should be 
developed to fully utilize the storage resources of existing and future 
computing infrastructures. Existing distributed learning paradigms, 
such as cross-institute FL in the healthcare field, still heavily rely on tedi-
ous verification and authorization before the actual learning process. 
They also largely rely on the data centre infrastructure for data storage 
and sharing. Consensus-based distributed learning can be a future 
direction in the field by incorporating a large number (for example, 
millions) of Internet-of-Things devices, edge servers and cloud centres 
altogether into the learning infrastructure, which fully utilizes the 
storage capacity and computational power of these devices based on 
a smart consensus strategy to protect data privacy while enabling fast 
data sharing and learning. Effective consensus mechanisms must be 
developed to be scalable, flexible and lightweight so as to fit heteroge-
neous system structures and requirements into distributed learning.

Stable infrastructures with AI-enhanced resource allocation
Out of regulatory considerations on health data security and privacy, 
instead of pushing towards better use of general-purpose commer-
cial cloud storage, an alternative, perhaps more viable approach, is 
to establish dedicated healthcare AI infrastructures that maintain full 
compliance with government regulations, which may evolve over time7. 
These infrastructures can be fully funded by governments or private 
sectors, and will secure the preservation of data and support the further 
development of algorithms. Additionally, AI-based techniques can be 
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applied to optimize resource allocation in terms of storage, computing 
power and energy efficiency in these infrastructures.

Interpretable self-supervised learning
The conflict between the increasing demand for domain expertise and 
the increasing volume of healthcare data will become more severe. 
Self-supervised learning can be a key approach to addressing the 
sustainability issue in domain expertise. Currently, there is still a big 
barrier to obtaining the trust of providers, doctors and patients due 
to the blackbox nature of deep learning-based diagnosis. A future 
direction could be self-supervised learning with interpretability/
explainability. Interpretable self-supervised learning algorithms can 
substantially alleviate the expertise sustainability issue by extracting 
clinically useful features, explaining analysis/diagnosis results with 
human-interpretable evidence, and training models without massive 
expert-labelled data, while further gaining the trust of domain experts, 
providers and patients. Future steps of interpretable self-supervised 
learning in healthcare applications could include (1) full exploration and 
usage of core medical features (for example, human-understandable 
features) by self-supervised learning algorithms to improve perfor-
mance and explainability; (2) human-interpretable inference and rea-
soning; (3) evolution of deep models with closed interaction with and 
input from human experts (for example, human-in-the-loop for error 
correction and function enhancement).

Few-shot learning on large language model for automatic 
labelling and annotation
Advancements in AI/ML algorithms have made it possible to automate 
the process of data labelling. Using few-shot learning techniques, 
large language models can be fine-tuned to automatically label 
meta-features in medical images or biomedical information text. This 
is achieved by providing prompts and a series of labelled examples, 
which allow the AI system to learn to recognize patterns and features 
in the images or text and label new instances accordingly. Automated 
labelling can substantially speed up the process of annotating large 
datasets, while also increasing the accuracy and consistency of the 
labels. Although automation can greatly reduce the time and effort 
required for annotation, it is important to validate and cross-check 
automated methods with manual annotations to ensure the highest 
level of accuracy.

The past few years have witnessed great success in large model 
design, exemplified by models such as ChatGPT, with its 175 billion 
parameters69, PaLM with its 540 billion parameters70 and Visual Chat-
GPT71. It is anticipated that, in the very near future, large AI models 
will also revolutionize healthcare, enabling improved performance in 
a broader spectrum of tasks beyond what we have focused on in this 
Perspective, such as evidence-based medicine and personal health 
advisors. The explosive increase in model complexity will, however, 
further stress the already existing resource sustainability issues. With 
the deep learning stack developed for predictable scalability in GPT-472, 
the performance of a small model with a limited number of parameters 
on a healthcare-specific task can be utilized to precisely predict the 
performance of a standard-scale model, which will substantially allevi-
ate the resource sustainability issue. It is also important to investigate 
methods that can better support not only model generalization but also 
specialization, through weakly supervised or unsupervised on-device 
learning and model personalization.
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