Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A temporally resolved DNA framework state machine in living cells

Abstract

The environments in living cells are highly heterogeneous and compartmentalized, posing a grand challenge for the deployment of theranostic agents with spatiotemporal precision. Despite rapid advancements in creating nanodevices responsive to various cues in cellular environments, it remains difficult to control their operations based on the temporal sequence of these cues. Here, inspired by the temporally resolved process of viral invasion in nature, we design a DNA framework state machine (DFSM) that can target specific chromatin loci in living cells in a temporally controllable manner. The DFSM is composed of a six-helix DNA framework with multiple locks that can be opened via DNA strand displacement. The opening of locks at different locations results in distinct structural configurations of the DFSM. We show that the DFSM can switch among up to six structural states with reversibility, in response to the temporally ordered molecular inputs, including DNA keys, adenosine triphosphate or nucleolin. By implementing state switching of the DFSM in living cells, we demonstrate temporally controlled CRISPR–Cas9 targeting towards specific chromatin loci, which sheds light on biocomputing and smart theranostics in complex biological environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of the DFSM.
Fig. 2: State switching of the DFSM as shown with fluorescence patterns.
Fig. 3: Kinetics of state switching sensitive to the temporal order of inputs.
Fig. 4: Temporal mapping of the DFSM responsive to NCL on cells.
Fig. 5: Internalization and operation switching of DFSMs in living cells.
Fig. 6: Operation of DFSM–CRISPR for NCL targeting in living cells.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

Code availability

The code for the algorithm used for the DNA framework state machine in this work is available in the GitHub repository at https://github.com/HalseyWang/DNA-framework-state-machine ref. 66.

References

  1. Whittaker, G. R. Intracellular trafficking of influenza virus: clinical implications for molecular medicine. Expert Rev. Mol. Med. 2001, 1–13 (2001).

    Article  Google Scholar 

  2. Brandenburg, B. & Zhuang, X. Virus trafficking-learning from single-virus tracking. Nat. Rev. Microbiol. 5, 197–208 (2007).

    Article  Google Scholar 

  3. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    Article  Google Scholar 

  4. Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    Article  Google Scholar 

  5. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  Google Scholar 

  6. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).

    Article  Google Scholar 

  7. Chen, Y. J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).

    Article  Google Scholar 

  8. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  Google Scholar 

  9. Munzar, J. D., Ng, A. & Juncker, D. Comprehensive profiling of the ligand binding landscapes of duplexed aptamer families reveals widespread induced fit. Nat. Commun. 9, 343 (2018).

    Article  Google Scholar 

  10. Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article  Google Scholar 

  11. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  Google Scholar 

  12. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  Google Scholar 

  13. Li, T., Lohmann, F. & Famulok, M. Interlocked DNA nanostructures controlled by a reversible logic circuit. Nat. Commun. 5, 4940 (2014).

    Article  Google Scholar 

  14. Liu, M. et al. A DNA tweezer-actuated enzyme nanoreactor. Nat. Commun. 4, 2127 (2013).

    Article  Google Scholar 

  15. Martin, T. G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun. 3, 1103 (2012).

    Article  Google Scholar 

  16. Ranallo, S., Prevost-Tremblay, C., Idili, A., Vallee-Belisle, A. & Ricci, F. Antibody-powered nucleic acid release using a DNA-based nanomachine. Nat. Commun. 8, 15150 (2017).

    Article  Google Scholar 

  17. Shibata, T. et al. Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nat. Commun. 8, 540 (2017).

    Article  Google Scholar 

  18. Woo, S. & Rothemund, P. W. K. Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nat. Commun. 5, 4889 (2014).

    Article  Google Scholar 

  19. Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).

    Article  Google Scholar 

  20. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5, 61–66 (2010).

    Article  Google Scholar 

  21. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    Article  Google Scholar 

  22. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  Google Scholar 

  23. Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).

    Article  Google Scholar 

  24. Surana, S., Shenoy, A. R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).

    Article  Google Scholar 

  25. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  Google Scholar 

  26. Ramezani, H. & Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

    Article  Google Scholar 

  27. Li, J., Fan, C., Pei, H., Shi, J. & Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25, 4386–4396 (2013).

    Article  Google Scholar 

  28. Pei, H., Zuo, X., Zhu, D., Huang, Q. & Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47, 550–559 (2014).

    Article  Google Scholar 

  29. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  Google Scholar 

  30. Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014).

    Article  Google Scholar 

  31. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  Google Scholar 

  32. Groves, B. et al. Computing in mammalian cells with nucleic acid strand exchange. Nat. Nanotechnol. 11, 287–294 (2015).

    Article  Google Scholar 

  33. Ren, K. et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016).

    Article  Google Scholar 

  34. Liu, L. et al. A localized DNA finite-state machine with temporal resolution. Sci. Adv. 8, eabm9530 (2022).

    Article  Google Scholar 

  35. Cao, S., Wang, F., Wang, L., Fan, C. & Li, J. DNA nanotechnology-empowered finite state machines. Nanoscale Horiz. 7, 578–588 (2022).

    Article  Google Scholar 

  36. Kuzuya, A., Wang, R., Sha, R. & Seeman, N. C. Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett. 7, 1757–1763 (2007).

    Article  Google Scholar 

  37. Liu, P. et al. Charge neutralization drives the shape reconfiguration of DNA nanotubes. Angew. Chem. Int. Ed. 57, 5418–5422 (2018).

    Article  Google Scholar 

  38. Chandrasekaran, A. R. Nuclease resistance of DNA nanostructures. Nat. Rev. Chem. 5, 225–239 (2021).

    Article  Google Scholar 

  39. Groves, B. et al. Computing in mammalian cells with nucleic acid strand exchange. Nat. Nanotechnol. 11, 287–294 (2016).

    Article  Google Scholar 

  40. Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

    Article  Google Scholar 

  41. Li, J. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).

    Article  Google Scholar 

  42. Wang, P. F. et al. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 140, 2478–2484 (2018).

    Article  Google Scholar 

  43. Bastings, M. M. C. et al. Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett. 18, 3557–3564 (2018).

    Article  Google Scholar 

  44. Ye, D. et al. Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. Nat. Protoc. 15, 2163–2185 (2020).

    Article  Google Scholar 

  45. Xu, C. F. et al. Rational designs of in vivo CRISPR–Cas delivery systems. Adv. Drug. Deliv. Rev. 168, 3–29 (2021).

    Article  Google Scholar 

  46. Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem. Int. Ed. 54, 12029–12033 (2015).

    Article  Google Scholar 

  47. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  Google Scholar 

  48. Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    Article  Google Scholar 

  49. Guo, P., Yang, J., Huang, J., Auguste, D. T. & Moses, M. A. Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel. Proc. Natl Acad. Sci. USA 116, 18295–18303 (2019).

    Article  Google Scholar 

  50. Killian, T. et al. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res. 47, e55 (2019).

    Article  Google Scholar 

  51. Liang, C. et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 147, 68–85 (2017).

    Article  Google Scholar 

  52. Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

    Article  Google Scholar 

  53. Gao, X. J. & Elowitz, M. B. Precision timing in a cell. Nature 538, 462–463 (2016).

    Article  Google Scholar 

  54. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  Google Scholar 

  55. Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveiehile, D. Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017).

    Article  Google Scholar 

  56. Xiong, X. W. et al. Molecular convolutional neural networks with DNA regulatory circuits. Nat. Mach. Intell. 4, 625–635 (2022).

    Article  Google Scholar 

  57. Piranej, S., Bazrafshan, A. & Salaita, K. Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic. Nat. Nanotechnol. 17, 514–523 (2022).

    Article  Google Scholar 

  58. Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article  Google Scholar 

  59. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345–349 (2017).

    Article  Google Scholar 

  60. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Article  Google Scholar 

  61. Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017).

    Article  Google Scholar 

  62. Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

    Article  Google Scholar 

  63. Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic recombinase-based state machines in living cells. Science 353, aad8559 (2016).

    Article  Google Scholar 

  64. Perli, S. D., Cui, C. H. & Lu, T. K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511 (2016).

    Article  Google Scholar 

  65. Schuller, V. J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 9696–9702 (2011).

    Article  Google Scholar 

  66. Wang, Y. HalseyWang/DNA-framework-state-machine: DFSM v1.0.1 (v1.0.1). Zenodo https://doi.org/10.5281/zenodo.8144751 (2023).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2020YFA0908900 to J.L.), the National Natural Science Foundation of China (T2188102, 21991134 and 21834007 to C.F.; 22022410 and 82050005 to Y. Zhu), and the New Cornerstone Investigator Program (to C.F.).

Author information

Authors and Affiliations

Authors

Contributions

C.F., J.L. and L.W. directed the research. C.F., J.L., L.W. and Y. Zhao conceived and designed the experiments. Y. Zhao, S.C., Y.W., F.L., L.G. and L.L. carried out the experiments and analysed data. F.W., J.C., X.Z. and Y. Zhu provided suggestions and technical support on the project. J.L. and C.F. wrote and revised the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Jiang Li or Chunhai Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FACS gating strategy.

Gating strategy to quantify cellular fluorescence in Fig. 5b. a) Gating strategy to sort single cells (P1) according to FSC vs SSC. Then the FITC intensity of cells in P1 was analyzed to determine the cellular fluorescence (taking blank group as an example). b) The same strategy was used to quantify the cellular fluorescence from the DNA nanostructures in Fig. 5b.

Extended Data Fig. 2 FACS gating strategy.

Gating strategy used for Fig. 6f. Gating strategy to sort single cells (R1) according to aspect ratio vs area. Then the FITC intensity of cells in R1 was analyzed to determine the cellular EGFP fluorescence (taking DFSM-sgRNA+key group as an example). The cells in R2 (FITC intensity less than 15000) were defined as EGFP negative cells. The same strategy was used to sort cells in untreated and DFSM-sgRNA groups.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–18, and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Cao, S., Wang, Y. et al. A temporally resolved DNA framework state machine in living cells. Nat Mach Intell 5, 980–990 (2023). https://doi.org/10.1038/s42256-023-00707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-023-00707-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing