Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Computation empowers CRISPR discovery and technology

CRISPR has revolutionized biomedical and bioengineering research as a programmable genome engineering technology. Computational tools have been integral throughout the discovery of CRISPR biology and the development of CRISPR-based technologies that hold promise to solve many challenges ahead.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Agarwal, N. & Gupta, R. History, evolution and classification of CRISPR-Cas associated systems. In Progress in Molecular Biology and Translational Science 11–76 (Elsevier, 2021).

  2. Giani, A. M., Gallo, G. R., Gianfranceschi, L. & Formenti, G. Comput. Struct. Biotechnol. J. 18, 9–19 (2019).

    Article  Google Scholar 

  3. Jansen, R., van Embden, J. D. A., Gaastra, W. & Schouls, L. M. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  Google Scholar 

  4. Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. Nucleic Acids Res. 30, 482–496 (2002).

    Article  Google Scholar 

  5. Giani, A. M. et al. Comput. Struct. Biotechnol. J. 18, 9–19 (2020).

    Article  Google Scholar 

  6. Barrangou, R. et al. Science 315, 1709–1712 (2007).

    Article  Google Scholar 

  7. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. PLoS Comput. Biol. 1, e60 (2005).

    Article  Google Scholar 

  8. Makarova, K. S. et al. Nat. Rev. Microbiol. 9, 467–477 (2011).

    Article  Google Scholar 

  9. Makarova, K. S. et al. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  Google Scholar 

  10. Hidalgo-Cantabrana, C. & Barrangou, R. Biochem. Soc. Trans. 48, 15–23 (2020).

    Article  Google Scholar 

  11. Xu, X. et al. Mol. Cell 81, 4333–4345e4 (2021).

    Article  Google Scholar 

  12. Wagner, D. L., Peter, L. & Schmueck-Henneresse, M. Gene Ther. 28, 549–559 (2021).

    Article  Google Scholar 

  13. Collias, D. & Beisel, C. L. Nat. Commun. 12, 555 (2021).

    Article  Google Scholar 

  14. Jumper, J. et al. Nature 596, 583–589 (2021).

    Article  Google Scholar 

  15. Baek, M. et al. Science 373, 871–876 (2021).

    Article  Google Scholar 

  16. Yuan, Q. et al. Brief. Bioinform. 23, bbab564 (2022).

    Article  Google Scholar 

  17. Buel, G. R. & Walters, K. J. Nat. Struct. Mol. Biol. 29, 1–2 (2022).

    Article  Google Scholar 

  18. Takeda, S. N. et al. Mol. Cell 81, 558–570e3 (2021).

    Article  Google Scholar 

  19. Evans, R. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  20. Palermo, G., Miao, Y., Walker, R. C., Jinek, M. & McCammon, J. A. Proc. Natl Acad. Sci. 114, 7260–7265 (2017).

    Article  Google Scholar 

  21. Lu, Y. et al. Nat. Med. 26, 732–740 (2020).

    Article  Google Scholar 

  22. Frangoul, H. et al. N. Engl. J. Med. 384, 252–260 (2021).

    Article  Google Scholar 

  23. Daer, R. M., Cutts, J. P., Brafman, D. A. & Haynes, K. A. ACS Synth. Biol. 6, 428–438 (2017).

    Article  Google Scholar 

  24. Schep, R. et al. Mol. Cell 81, 2216–2230e10 (2021).

    Article  Google Scholar 

  25. Szlachta, K. et al. Nat. Commun. 9, 4275 (2018).

    Article  Google Scholar 

  26. Dixit, A. et al. Cell 167, 1853–1866e17 (2016).

    Article  Google Scholar 

  27. Bock, C. et al. Nat. Rev. Methods Primers 2, 8 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank X. Lin for useful discussion. S.S. and L.S.Q. acknowledge support from National Science Foundation CAREER award (to L.S.Q., award no. 2046650). L.S.Q. also acknowledges support from National Science Foundation NSF2026: EAGER (award no. 2033387), National Institutes of Health National Cancer Institute (grant no. 1R01CA266470-01A1, 1R21CA270609-01) and 4D Nucleome (grant no. 1U01DK127405-03), and Stanford Innovative Medicines Accelerator. L.S.Q. is a Chan Zuckerberg Biohub Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei S. Qi.

Ethics declarations

Competing interests

L.S.Q. is a founder of Epicrispr Biotechnologies and a scientific advisor of Epicrispr Biotechnologies and Laboratory of Genomics Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, S., Cai, X.S. & Qi, L.S. Computation empowers CRISPR discovery and technology. Nat Comput Sci 2, 533–535 (2022). https://doi.org/10.1038/s43588-022-00321-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00321-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing