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Quantum computing promises to enhance machine learning and artificial intelligence [1–3]. Different
quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks [4–12].
Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural
networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted
perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably
high confidence level [13–17]. This will pose serious problems for future quantum machine learning ap-
plications in safety and security-critical scenarios [18–20]. Here, we report the first experimental demon-
stration of quantum adversarial learning with programmable superconducting qubits. We train quantum
classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featur-
ing average lifetimes of 150 µs, and average fidelities of simultaneous single- and two-qubit gates above
99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging
scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up
to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training
process would significantly enhance their robustness to such perturbations. Our results reveal exper-
imentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and
demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for
quantum artificial intelligence applications with both near-term and future quantum devices.

In recent years, artificial intelligence (AI) [21–23] and
quantum computing [24–26] have made dramatic progress.
Their intersection gives rise to a research frontier called, quan-
tum machine learning or generally, quantum AI [1–3]. A num-
ber of quantum algorithms have been proposed to enhance
various AI tasks [4–12]. With the rapid establishment of quan-
tum enhanced AI, a pressing, fundamental question emerges
naturally: are quantum AI technologies trustworthy under ad-
versarial attacks?

Classical neural networks are vulnerable to adversarial per-
turbations. For instance, a stop sign with small graffiti might
be misclassified as a yield sign [27], whereas adding a tiny
amount of carefully-crafted noise—which is even impercep-
tible to the human eye—into an image of a benign skin le-
sion would fool the classifier to predict it as malignant [20].
This surprising vulnerability of classical neural networks has
far-reaching consequences in safety and security-critical sce-
narios (e.g., autonomous driving, biometric authentication,
and medical diagnostics). More recently, the vulnerability of
quantum classifiers has been studied, establishing the foun-
dations of quantum adversarial machine learning [13–17]. It
has been shown theoretically that quantum classifiers are like-
wise highly vulnerable to adversarial examples, independent
of the learning algorithms and regardless of whether the in-
put data is classical or quantum [13]. In addition, different
countermeasures, such as adversarial training [28], have also

been proposed to enhance the robustness of quantum classi-
fiers against adversarial perturbations. However, demonstrat-
ing adversarial examples for quantum classifiers experimen-
tally and showing the effectiveness of the proposed counter-
measures in practice are challenging and have not previously
been reported. To accomplish this, one faces at least two dif-
ficulties: (i) determining an experimentally feasible encoding
of high-dimensional classical data, and (ii) building quantum
classifiers with a large enough state-space so as to identify re-
alistic images.

Here, we overcome these difficulties and report the first
experimental demonstration of quantum adversarial learning
with an array of ten programmable superconducting transmon
qubits. Through optimizing device fabrication and control-
ling process, we push the average lifetime of these qubits to
150 µs and the average simultaneous single- and two-qubit
gate fidelities greater than 99.94% and 99.4%, respectively.
This enables us to successfully implement large-scale quan-
tum classifiers with different structures up to a circuit depth of
60 and the number of trainable variational parameters exceed-
ing 250. We train these classifiers with both large-size real-
life images (e.g., medical magnetic resonance imaging scans
[30–33]) and high-dimensional quantum data (e.g., thermal
and localized quantum many-body states), through quantum
gradients obtained directly by measuring some observables.
After training, these classifiers can achieve the state-of-the-art
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FIG. 1. Schematic of experimental quantum adversarial learning. a, A legitimate MRI (magnetic resonance imaging) scan of a fixed
cerebral hemisphere for sclerosis diagnosis [29] and its corresponding adversarial example, which is obtained by adding a tiny amount of
carefully-crafted perturbations to the original image. b, Exhibition of a programmable quantum processor with 36 superconducting transmon
qubits arranged on a 6 × 6 square lattice. The qubit layer and control-line layer as highlighted are patterned on the sapphire (top) and silicon
(bottom) substrates respectively, which are assembled together during the flip-chip bonding process. The quantum classifiers are build upon
large-scale variational quantum circuits implemented with this processor. c, Predictions for the legitimate and adversarial samples. The
quantum classifier will correctly identify the legitimate MRI scan as “Malignant”, whereas incorrectly classify the corresponding adversarial
example, which differs by only an imperceptible amount of perturbation, into the “Benign” class with a high confidence.

performance on these datasets, with a testing accuracy up to
99%. We generate adversarial examples through a classical
optimizing procedure and show unambiguously that they can
deceive the trained quantum classifiers with a high confidence
level. To mitigate such vulnerability, we further demonstrate
that, through adversarial training, the quantum classifiers will
be immune to adversarial perturbations generated by the same
attacking strategy.

Framework and experimental setup
We first introduce the general framework for quantum adver-
sarial machine learning. We consider classification tasks in
the setting of supervised learning [13], where we train quan-
tum classifiers with pre-labeled data samples, through mini-
mizing the following loss function iteratively

L (h (x;θ) ,a) = −
∑
k

ak log gk. (1)

Here, x denotes a training sample, h(x;θ) represents the hy-
pothesis function determined by the quantum classifier with
variational parameters denoted collectively as θ, a is the one-
hot encoding of the labels, and gk denotes the probability for
the k-th category obtained from measuring the quantum clas-
sifier (see Methods). After the training process, the quantum
classifier will typically be able to assign labels to data sam-
ples outside the training set with high accuracy. To obtain
adversarial examples, we focus on the scenario of untargeted
white-box attacks, where we assume the attacker has full in-

formation about the quantum classifier and no particular class
is aimed [13]. Unlike the training process, where we vary the
variational parameters to minimize the loss, for generating ad-
versarial examples we fix θ at its optimal value θ∗ obtained at
the last step of the training, and optimize over the input space
within a small region to maximize the loss function instead
(see Methods and the Supplementary Sec. IB). We input the
generated adversarial examples into the quantum classifier to
test its performance. A schematic illustration of the main idea
for quantum adversarial learning is shown in Fig. 1.

Our experiment is implemented on a flip-chip supercon-
ducting quantum processor, which possesses 36 transmon
qubits arranged in a two-dimensional array featuring tunable
nearest neighbor couplings (Fig. 1b). To achieve high co-
herence we deposited tantalum films, using a high-vacuum
sputtering system (Yunmao QBT-P), which were patterned
for qubit structures. For the purpose of demonstrating quan-
tum adversarial learning, we choose a one-dimensional array
of ten qubits, whose energy relaxation times T1 range from
131 to 173 µs at the frequencies where the qubits are ini-
tialized and operated. Single-qubit XY rotations are realized
using 30 ns-long microwave pulses which are generated by
multi-channel arbitrary waveform generators (MOSTFIT MF-
AWG-08), and the controlled-NOT (CNOT) gate is based on
controlled-π phase (CZ) gate plus single-qubit rotations. The
CZ gate, which has a length of 60 ns, is realized by care-
fully tunning the frequencies and coupling strength of qubits
to steer a closed-cycle diabatic transition of |11〉 ↔ |20〉 (or



3

ℓ

⋮

𝐐𝟏𝟎

𝐐𝟗

𝐐𝟑

𝐐𝟐

𝐐𝟏

𝐐𝟓

e

d

a

c

b

0.06

0.18

-0.26 

-0.34 

⋯

⋯

. . .

. . .

. . .

. . .

. . .𝑥10 𝜃10+

𝑥1 𝜃1+
𝑥2 𝜃2+
𝑥3 𝜃3+

𝑥9 𝜃9+

. . .

. . .

. . .

. . .

. . .𝑥10 𝜃10+

𝑥1 𝜃1+
𝑥2 𝜃2+
𝑥3 𝜃3+

𝑥9 𝜃9+

. . .

. . .

. . .

. . .

. . .𝑥10 𝜃10+

𝑥1 𝜃1+
𝑥2 𝜃2+
𝑥3 𝜃3+

𝑥9 𝜃9+

. . .

. . .

. . .

. . .

. . .𝑥10 𝜃10+

𝑥1 𝜃1+

𝑥2 𝜃2+

𝑥3 𝜃3+

𝑥9 𝜃9+

𝑅𝑥 𝑅𝑧

𝐱 = (𝑥1 𝑥2 ⋯ 𝑥𝑛)

f

FIG. 2. The framework of a quantum neural network for learning medical data and the experimental demonstration of its vulnerability
to adversarial perturbations. a, Encoding of the medical hand-breast MRI data. We compress each MRI image to 16 × 16 pixels, which is
represented by a 256-dimensional vector x encoded into the quantum neural network classifier. b, Experimental quantum circuit to realize the
interleaved block-encoding quantum classifier. The circuit is composed of l blocks, of which each consists of multiple layers of single-qubit
rotational gates (dash blue box) followed by two layers of CNOT gates (dash yellow box). The rotation angles are obtained by summing up x
and variational parameters θ. c, Loss function (up) and accuracy (down) for the training and testing dataset at each epoch during the training
process of the quantum classifier. d, Experimentally measured 〈σ̂z〉 of Q5 for the test (square) data at epoch 0, 5 and 20 respectively. Data
points for samples labeled “hand” and “breast” are colored in blue and red, respectively. e, Legitimate and adversarial samples with measured
output 〈σ̂z〉 for Q5 of the trained quantum classifier. f, Experimentally measured 〈σ̂z〉 for adversarial examples when input into the trained
quantum classifier (at the epoch 20 of the training process).

|02〉) [34, 35]. Since single-qubit (two-qubit) gates are si-
multaneously implemented on multiple qubits (qubit pairs) in
our experimental sequences, we carry out simultaneous cross
entropy benchmarkings to characterize gate performances,
yielding average Pauli error around 0.08% (0.72%). See Sup-
plementary Sec. III for details on device and gate perfor-
mances.

Quantum adversarial learning medical data
Machine learning has cemented its role in modern medical

related technologies, ranging from the development of health-
care systems [36], and the dermatologist-level classification
of skin cancer [37], to the prediction of the progression from
pre-dabetes to type II diabetes using routinely-collected health
record data [38]. This is such a safety and security-critical
area, where incorrect predictions of the learning system may
cost billions of dollars for healthcare insurance companies or
even lead to possible medical disasters [20]. Quantum ma-
chine learning holds vast potential in medical applications.
Yet, similar to the classical medical learning, its possible vul-
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FIG. 3. Experimental results for learning quantum data. a, Pulse sequences for generating quantum data. After preparing the system
into the Néel state, we tune the frequency of each qubit to engineer the incommensurate potential of the Aubry-André model (inset) and wait
for 400 ns until the system evolves into the desired state. b, The excited state probability P1 of each qubit with φ fixed to 0 and different
V/g. The system hosts a transition from thermal to localized phases at the critical point V/g = 2 (dash line). The two categories of quantum
data, labeled as |T〉 (thermal) and |L〉 (localized), are sampled from V/g ∈ [0, 1] and [4, 5] (gray boxes) respectively with random φ. c, Loss
function (up) and accuracy (down) for the test and training set at each epoch. d, Vulnerability of the quantum classifier in learning quantum
states. We select ten legitimate |T〉 and |L〉 states from the training set, whose local magnetization distribution and classification outputs are
shown in the top and lower left panels. After applying adversarial perturbations on the legitimate states, half of the |T〉 and all the |L〉 states
are classified incorrectly by the trained classifier (lower right), even though the essential features of local magnetization distribution (top right)
are still clearly distinct for thermal and localized regions.

nerabilities likewise demand careful study.
To investigate the vulnerability of quantum learning sys-

tems in medical diagnoistics, we consider a binary classifi-
cation task for identifying MRI images. We exploit an in-
terleaved block-encoding theme [39–41], rather than the con-
ventional amplitude encoding, to encode the input classical
data (Methods and Supplementary Sec. IA). This enables us
to circumvent the notorious difficulty of preparing a highly-
entangled multiqubit quantum state and is crucial for the suc-
cess of classifying large-size images (16 by 16 pixels, Fig. 2a)
by a large-scale quantum classifier (up to 260 trainable param-
eters) with the state-of-the-art (but still rather limited) gate
fidelities. The interleaved block-encoding and the structure
of our quantum classifier are illustrated in Fig. 2b. We train
our quantum classifier with MRI images labeled by “Hand”
and “Breast”, through quantum gradients obtained directly by
measuring some observables in our experiment (Supplemen-
tary Sec. IA). Our experimental result for the training pro-
cess is plotted in Fig. 2c, from which it is clear that the ac-
curacy for both the training and test datasets increases rapidly
at the beginning of the training process and then saturate at

a high value (0.92 and 0.97 for the training and test datasets,
respectively). In Fig. 2d, we plot the measured 〈σ̂z〉 value,
which determines the assigned labels (“Hand” and “Breast”
for 〈σ̂z〉 ≥ 0 and 〈σ̂z〉 < 0, respectively), for samples from
the test dataset at different iteration steps. We find that at the
beginning (left subfigure), 〈σ̂z〉 concentrates near zero, which
agrees with the fact that the variational parameters for the
quantum classifier are randomly initialized. After five train-
ing epochs (middle subfigure), 〈σ̂z〉 become clearly bifurcated
(〈σ̂z〉 > 0 for all the “Hand” images and 〈σ̂z〉 < 0 for most
of the “Breast” images), resulting in a test accuracy of about
0.96. After 20 epochs (right subfigure), the bifurcation of 〈σ̂z〉
is larger, which is consistent with the decrease of the loss func-
tion as shown in Fig. 2c (up panel).

After the training process, we fix the variational parameters
of the quantum classifier and solve the following optimization
problem to obtain adversarial perturbations (which are then
added to the corresponding legitimate MRI images to generate
adversarial examples, see Supplementary Sec. IB)

δ ≡ argmax
δ′∈∆

L (h (x + δ′;θ∗) ,a) , (2)
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where ∆ denotes a small region introduced to ensure that the
adversarial perturbations are small and will not alter the in-
put data essentially. In Fig. 2e, we plot the original legitimate
MRI images (left column) and their corresponding adversarial
ones (right column), together with their measured 〈σ̂z〉 val-
ues. From this figure, we see that the adversarial images dif-
fer from the legitimate ones only by a tiny amount of pertur-
bations (almost imperceptible to human eyes), yet the well-
trained quantum classifier will assign incorrect labels to them,
as indicated by the corresponding measured 〈σ̂z〉 values. In
addition, Fig. 2f shows 〈σ̂z〉 for all adversarial examples cor-
responding to the original MRI images in the test set. We
find that the quantum classifier misclassifies all of them. This
unambiguously manifests the vulnerability aspect of quantum
classifiers in learning medical images.

Adversarial examples for quantum data
Unlike classical classifiers that can only take classical data
as input, quantum classifiers can also naturally handle quan-
tum states as input and gain potential exponential advantages.
We now show the vulnerability of quantum classifiers in clas-
sifying quantum states. For concreteness, we consider a bi-
nary classification of quantum states generated by evolving
the Néel state for a period of time with the following Aubry-
André Hamiltonian [42]:

H/~ = −g
2

∑
k

(σ̂xk σ̂
x
k+1 + σ̂yk σ̂

y
k+1)−

∑
k

Vk
2
σ̂zk, (3)

where g is the coupling strength, σ̂lk (l = x, y, z) is the Pauli
operator for the k-th qubit, and Vk = V cos(2παk + φ) is the
incommensurate potential with V being the disorder magni-
tude, α = (

√
5−1)/2 being an irrational number and φ being

a random phase evenly distributed on [0, 2π). This Hamilto-
nian features a quantum phase transition at V/g = 2, between
a localized phase for V/g > 2 and a delocalized (thermal)
phase for V/g < 2 [42]. In our experiment, we initialize the
system to the Néel state and then evolve it under H for about
400 ns, with the pulse sequence sketched in Fig. 3a. We fix
g/2π ≈ 5 MHz and scan V/2π from 0 MHz to 30 MHz. In
Fig. 3b, we plot the measured probability P1 of being on state
|1〉 for each qubit (equivalent to the local magnetization 〈σ̂z〉
by noting P1 ≡ 1

2 −
1
2 〈σ̂z〉) for varying V , from which the

localized and thermal features of the evolved states are clearly
manifested.

We randomly choose some of the evolved quantum states
deep in the localized and thermal regions (dashed grey boxes
in Fig. 3b) to form a quantum dataset. We implement a quan-
tum classifier, which consists of five layers with each contain-
ing three single-qubit rotations and two controlled-NOT gates,
to classify the chosen states in a supervised fashion (Supple-
mentary Sec. II). We randomly initialize the 150 variational
parameters and train the quantum classifier with experimen-
tally obtained quantum gradients. Fig. 3c plot the accuracy
and loss as a function of epochs obtained in our experiment
during the training process. We find that the implemented

ba

Accuracy
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ො𝜎𝑧
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-0.26

FIG. 4. Experimental results for quantum adversarial training
with MRI images. a, Accuracy for the legitimate and adversarial
test data at each epoch during the adversarial training process. b, An
image of an adversarial sample and the corresponding experimental
outputs before and after adversarial training of the quantum classifier.
Before adversarial training, the classifier will misclassify this sample
as “Breast” (as indicated by the output 〈σ̂z〉 = −0.26), whereas after
adversarial training, it will restore its validity and identify the sample
correctly as “Hand” again (as indicated by 〈σ̂z〉 = 0.18).

quantum classifier has an excellent performance in this task
and after about 30 iteration steps it achieves near perfect ac-
curacy on both the training and test datasets.

Similar to the case of learning medical images, the quantum
classifier is vulnerable to adversarial perturbations in leaning
quantum states as well. To demonstrate this in our experi-
ment, we generate adversarial perturbations for state samples
in the test set by solving an optimization problem with quan-
tum gradients measured in experiment (Methods and Sup-
plementary Sec. IIB). We add the obtained perturbations to
their corresponding legitimate states through adding a near-
identity unitary before input the states into the quantum clas-
sifier. In the first row of Fig. 3d, we randomly choose 20
states from the training set and plot their measured P1 values
of each qubits, for both the legitimate (left) and adversarial
(right) samples. From this figure, the adversarial examples
differs slightly from the legitimate ones (especially for these
in the thermal region, the difference is indiscernibly small)
and maintain the essential features (i.e., vanishing and per-
sistent local magnetization) for thermal and localized states,
respectively. However, they would successfully deceive the
quantum classifier with very large probability, as indicated in
the second row of Fig. 3d. From the left subfigure, it is clear
that the trained classifier can correctly identify all the legiti-
mate states. Whereas, it will misclassify all (half) of the ad-
versarial examples in the localized (thermal) region, as shown
in the right subfigure. This demonstrates lucidly the vulner-
ability of quantum classifiers to adversarial perturbations in
categorizing quantum states.

Adversarial training of quantum classifiers
In the above discussion, we have shown with concrete exam-
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ples that quantum learning systems are rather fragile to adver-
sarial attacks. This may lead to severe problems for their ap-
plications, especially for these in safety and security-sensitive
scenarios, ranging from autonomous driving [43] and medical
diagnoistics [20] to quantum finance [44] and biometric au-
thentication [45]. In theory, a variety of defense strategies
have been proposed to enhance the robustness of quantum
learning systems against adversarial perturbations, including
adversarial training [13] and exploiting quantum noises [46].

Here, we focus on adversarial training and carry out an
experiment to demonstrate its effectiveness in practice. We
first numerically generate adversarial examples for each legit-
imate sample and then inject them into the training set. We
retrain the quantum classifier with both the legitimate and ad-
versarial samples (Methods). In Fig. 4a, we plot the accu-
racy of the classifier for classifying MRI images on both the
legitimate and adversarial sets, as a function of epochs dur-
ing the adversarial training process. We find that it increases
for both datasets and approaches unity after about 25 epochs,
indicating that the adversarially retrained quantum classifier
becomes immune to adversarial perturbations. To be more
concrete, in Fig. 4b we plot a randomly chosen adversar-
ial example (up panel). This image will be misclassified by
the original quantum classifier into the category of “Breast”
(with 〈σ̂z〉 = −0.26), yet after adversarial training it will be
identified correctly as “Hand” (with a refreshed 〈σ̂z〉 value
of 0.18). This shows explicitly that adversarial training can
indeed significantly enhance the robustness of quantum clas-
sifiers against adversarial perturbations.

Conclusions and outlook
Theoretically, the existence of adversarial examples has an
origin in the fundamental concentration of measure phe-
nomenon [47] and is hence an inevitable feature for quantum
machine learning with high-dimensional data [13–15], inde-
pendent of the learning models, the training algorithms, and
whether the input data is classical or quantum. In this work,
our discussion is mainly focused on supervised learning based
on quantum circuit classifiers. The experimental demonstra-
tion of quantum adversarial examples for unsupervised learn-
ing and other types of quantum classifiers [48] seems more
technically sophisticated and still remain unattainable. In ad-
dition, other defense strategies such as defensive distillation
[49] and defense-GAN (generative adversarial network) [50]
have also been introduced in the classical adversarial machine
learning literature. It would be interesting and important to
extend these strategies to the quantum domain, both in the-
ory and experiment. In particular, we note that a quantum
version of GAN (qGAN) has already been demonstrated ex-
perimentally [51, 52]. Yet, how to construct a defense-qGAN
that would substantially enhance the robustness of quantum
learning systems to adversarial perturbations and how to im-
plement it in experiment remain still unclear and worth further
investigation.

Undoubtedly, the promise of quantum AI is huge. Yet,

how to build a trustworthy quantum AI system and deliver
this promise to practical applications remains largely unclear
and demands long-term research. Our results make a crucial
experimental attempt towards trustworthy quantum AI by not
only revealing the vulnerability of quantum learning systems
in adversarial scenarios, but also demonstrating the effective-
ness of a defense strategy against adversarial attacks in prac-
tice. As the fledgling field of quantum AI grows, our results
will prove useful in practical applications that are safety and
security critical.

Methods
Quantum classifiers with classical data
Here, we introduce the detailed settings of the quantum clas-
sifier for the classical dataset. The quantum classifier is com-
posed of several blocks, while each block contains several lay-
ers of single qubit gates and ends with two layers of CNOT
gates that entangle all the qubits. For each block, as shown in
Fig. 2b., the single qubit gates can be utilized to encode both
trainable parameters and the input data. To encode the im-
age information from the medical MRI dataset [30–32] into
the quantum classifier, we first compress the images down
to 16 by 16 pixels, which are then normalized and mapped
into the rotation angles of the single qubit gates in the quan-
tum classifier by a factor of two. For concreteness, since we
are using a ten-qubit quantum classifier, we use 26 layers of
single-qubit variational gates to encode the 256-dimensional
data by adding four “0” at the end of the data vectors. For
each rotation angle that encodes the input samples, we attach
one trainable parameter that can be optimized with gradient
descent methods.

For the hyperparameter setting of the experimental demon-
strations, we select the “Hand” and “Breast” MRI images
from the medical dataset. The size of the training set and the
test set are 500 and 100 , respectively. To measure the distance
between the current output and the target label, we choose
cross entropy as the loss function (Eq. 1), and the learning
rate is set to be 0.05.

The quantum classifier is initialized with randomly gener-
ated trainable parameters. During the training process, we di-
vide the 260 trainable parameters into ten groups. For each
epoch, we update the parameters in these groups sequentially.
To train the parameters in each group, we randomly select 20
(50) samples from the training (test) set, where the 20 samples
from the training set are utilized to calculate the gradients and
optimize the parameters in the classifier, and the 50 test sam-
ples are utilized to approximately calculate the test accuracy.
The loss function and accuracy of both training and test data
measured at each epoch are plotted in Fig. 2c. As the loss
function decreases slowly during the learning process, the ac-
curacy increases at a relatively faster speed and approaches
to saturated values after about five epochs. Further decrease
of the loss function helps to enhance the separation between
the two categories, as witnessed by the instances in Fig. 2d.
After 20 epochs, the trained quantum classifier is able to clas-
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sify the total training (test) set with accuracy 0.92 (0.97). We
note that, to minimize the circuit depth in order to reduce the
experimental noise, we recompile the quantum circuit before
the actual execution by replacing the single qubit gates with
two gates, i.e., Rφ(α) and Rz(θ) (Supplementary Sec. IIIB).
Moreover, dynamical decoupling pulses are applied on the
qubits during their idling times in the quantum circuits.

We mention that, in addition to the learning task for the
medical data in the main text, we have demonstrated the quan-
tum adversarial learning of MNIST handwritten digit dataset
[53] as well to exam the feasibility of our protocol. For this
task, The basic quantum circuit settings are the same as that
for the medical dataset, and the images of digits “0” and “1”
are selected to form the training and test set. For experimen-
tal convenience, we only choose 50 of these parameters to be
trained, which lie at the 3rd, 6th, 11th, 17th, 23rd single-qubit
layers of the quantum classifier. The experimental results for
learning MNIST handwritten digit dataset are shown in Sup-
plementary Sec. IIIC, Fig. S13a,b. We plot the loss function
and accuracy of both training and test data measured at each
epoch. After the training process, the trained quantum classi-
fier is able to classify the total training (test) set with accuracy
0.98 (0.99).

Quantum classifiers with quantum data
On our device, the frequency of each qubit and the coupling
strength between neighboring qubits are programmable with
high flexibility, such that we can synthesize the Aubry-André
Hamiltonian (Eq. 3) and modulate its relevant coefficients
such as the coupling strength g and the on-site disorder Vk
in arbitrary manners. Experimentally we fix g by setting the
coupler frequencies and apply desired flux bias to each qubit
to vary Vk as a consine function over k.

With the experimental settings introduced above, we con-
struct the training (test) set with 500 (100) quantum states,
where half of the states come from the localized phase and the
remaining half from the delocalized phase. The classifier is
composed of five blocks and contains a total number of 150
training parameters encoded in the single-qubit rotation an-
gles (see Supplementary Sec. IIIB, Fig. S9 for the full circuit
of the classifier). The training parameters are divided into 10
groups with each group containing 15 parameters and trained
sequentially at each epoch. For each group, we randomly se-
lect 20 (50) samples to form the training (test) set.

Adversarial training
The adversarial examples aim to lead the well-trained quan-
tum classifier to make incorrect predictions. In general,
these adversarial examples are generated by adding carefully-
designed but imperceptible perturbations to the original sam-
ples. To generate these adversarial perturbations in our work,
we have designed several untargeted white-box attack strate-
gies for both the classical and the quantum data, which are
described in detail in the Supplementary Sec. IB and Sec. IIB.
Essentially, the perturbation is designed to maximize the loss
function, which is in line with maximizing the distance be-

tween the model’s output and the correct label, i.e., effectively
deceiving the classifier to make incorrect classifications. In
our work, we utilize this idea and apply gradient ascent meth-
ods to generate adversarial perturbations assisted by the Adam
optimizer, and the attacking strategies for the classical dataset
and the quantum dataset are presented as follows.

First, we consider the case of classical data. For each sam-
ple in the training (test) set with size 500 (100), we numeri-
cally generate a corresponding adversarial example on a clas-
sical computer aiming to lead the well-trained classifier to
make an incorrect prediction. We calculate the gradients of
the loss function with respect to the input sample and use
gradient ascent to maximize the loss function. For concrete-
ness, two strategies are applied to generate two types of ad-
versarial examples, namely, type-1 examples and type-2 ex-
amples (see Supplementary Sec. IB for detailed algorithms).
These generated adversarial examples are then processed by
the quantum classifier. As shown in Fig. 2e and 2f, we ex-
perimentally verify the effectiveness of these adversarial ex-
amples, where the quantum classifier tends to assign incor-
rect labels to them. Moreover, we provide supplementary ex-
perimental demonstrations of adversarial examples with the
MNIST handwritten digit dataset in Supplementary Sec. IIIC,
Fig. S13c, from which we can see that the slightly-perturbed
handwritten digits successfully deceive the quantum classifier.
We mention that this procedure requires high-quality super-
conducting quantum processors, so that the adversarial exam-
ples generated by a classical computer can still deceive the
quantum classifier, despite the inevitable experimental noises.

Second, to generate the adversarial examples for quan-
tum data, we add local perturbation, which is parameterized
by three single-qubit gates, i.e., Rx(δ1)Rz(δ2)Rx(δ3) with
δi ∈ [−0.5, 0.5], to each qubit before tuning the system to
evolve under the Aubry-André Hamiltonian. These perturba-
tions are optimized experimentally to maximize the loss func-
tion, i.e., to lead the quantum classifier to make incorrect pre-
dictions. To ensure that the locally-perturbed states maintain
the original states’ property (localized or thermal), we com-
pare the states before and after adding adversarial perturba-
tions experimentally (Fig. 3d). For more information about
generating adversarial examples for both classical data and
quantum data, we provide the detailed algorithms in Supple-
mentary Sec. IB and Sec. IIB.

Now, we introduce the settings for the adversarial training
of quantum classifiers. The basic idea is to mix the adversar-
ial samples and the original samples to construct new training
and test sets. We start the training by re-initializing the 260
trainable parameters with random values. At each training
epoch, we randomly select 10 samples from original data set
and 10 from the adversarial data set to form a training batch.
The learning rate and the optimization strategies remain the
same as those in the original training procedure. After the
re-training process, the loss function and accuracy for both
the original and adversarial samples measured at each train-
ing step are shown in Fig. 4a with a specific example shown
in Fig. 4b. And it turns out that the re-trained classifier is
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able to identify both the legitimate samples and the adversar-
ial ones with high accuracy, and thus has obtained the immu-
nity against certain adversarial attacks. Similarly, the same
adversarial training has been successfully implemented with
the MNIST handwritten digit dataset, with the obtained exper-
imental results shown in Supplementary Sec. IIIC, Fig. S13d.
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I. THEORETICAL DETAILS FOR QUANTUM NEURAL NETWORKS HANDLING CLASSICAL DATA

A. Quantum neural network classifiers

With the recent development in quantum machine learning [1–3], some advanced quantum machine learning algorithms
may bring near-term applications. In the era of noisy intermediate-scale quantum (NISQ) devices [54], variational quantum
algorithms have been developed tremendously [55], among which quantum neural network (QNN) classifiers have drawn a
wide range of interest over the recent years [48]. In this subsection, we will introduce the basic structures and optimization
strategies for QNN classifiers. To experimentally demonstrate QNN classifiers with high-dimensional datasets, we introduce
an “interleaved” QNN architecture which has the expressive power to handle the classification of real-life images up to 256-
dimensional, followed by numerical benchmarks for exhibiting the better classification performance than the “encoding first”
QNN architecture.

1. Basic structures

Quantum neural networks are usually considered as the quantum analog of classical neural networks, whose structures can
be represented by parameterized quantum circuits. For the basic building blocks of QNN circuits, popular choices include
single-qubit rotation gates and two-qubit controlled gates:

Rx(θ) = e−i
θ
2 σ̂x Ry(θ) = e−i

θ
2 σ̂y Rz(θ) = e−i

θ
2 σ̂z
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=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 Z

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


In practice, there are many other choices for experimental demonstrations such as the Controlled-SWAP gate and the iSWAP
gate. Which one to choose should take into account the platform and the detailed task information. In addition to the digital
components listed above, the evolution of a global Hamiltonian can be utilized as an analog block. In our work, we mainly use
single-qubit gates (Rx(θ), Ry(θ), and Rz(θ)) and Controlled-NOT gates as the building blocks for experimental demonstrations
and numerical benchmarks.

With a QNN structure constructed using the chosen building blocks, it can be utilized to handle some optimization-based
tasks, where the rotation angles in the single-qubits gates can be used as variational parameters. For classification tasks, we need
to encode the input data into the QNN classifier. If the data directly comes from a quantum process, we can assume that it is
already encoded into the input quantum state and can be fed into a quantum classifier directly. However, if the data is from a
classically-stored dataset, which is often seen as a suitable case for implementations on NISQ devices, we need to encode it into
the QNN circuit. In this situation, one method is to encode the data into the rotation angles of the single-qubits gates similar to
the encoding of variational parameters.

As shown in Fig. S1, we present three QNN structures: (1) The amplitude-encoding QNN structure, where we assume the
input state contains the data information; (2) The “encoding first” block-encoding QNN structure, where the first part of the QNN
is used to encode the data, followed by a variational part to be trained; (3) The “interleaved” block-encoding QNN structure,
where the data-encoding blocks and variational blocks are interleaved. The third structure is utilized in our experiments, and in
Sec. I A 3, we will numerically benchmark the performances for the second and third one.

2. Optimization strategies

With the QNN structure discussed above, our goal is to train a QNN classifier which is able to learn the patterns from the
training data and has decent generalization performance on the test set. Thus, first we need to formalize the task to be an
optimization problem. For both amplitude encoding and block encoding schemes, the output is chosen as an expectation value
of some observables, according to which the classification decisions are made. For example, when we adapt the QNN classifier
to recognize different medical images labeled “benign” and “malicious”, we can choose the expectation value of the Z-basis
measurement on the last qubit. If the label of the input data is “benign”, our goal is to train the QNN classifier to maximize
the expectation value, i.e., maximize P (|0〉). If the label is “malicious”, then the goal is to minimize the expectation value, i.e.,
maximize P (|1〉). After the training phase, the predictions of unseen samples are made according to argmax{P (|0〉), P (|1〉)}.
The basic settings for the prediction phase are listed below:

• In our work, we mainly consider binary classification tasks. Given an input x and trainable parameters θ: (1) For block
encoding schemes, the output state will be |Ψ〉 = Ux,θ |00...0〉; (2) For amplitude encoding schemes, the output state
will be |Ψ〉 = Uθ |x〉. We define the observables of the binary measurements on the Pauli Z-basis as the projectors O+

k

and O−k corresponding to spins +1 and −1, respectively, where k denotes the index of the qubit on which we apply our
measurements.

• It is obvious that 〈Ψ| (O+
k + O−k ) |Ψ〉 = 1. Now we define the probability of assigning |Ψ〉 to class 1 as P1(|Ψ〉) =

〈Ψ| O+
k |Ψ〉, and to class 2 as P2(|Ψ〉) = 〈Ψ| O−k |Ψ〉. Given a new input |Ψi〉, it will be assigned to class 1 if P1(|Ψi〉) >

P2(|Ψi〉) and vice versa. With a trained model, the predictions are expected to agree with the true labels.

With these definitions and the training goals, we now discuss how to achieve these goals through an optimization procedure.
In general deep supervised learning tasks, we need a loss function to measure the distance between the current predictions and
target predictions. Easy-understand examples include the mean square error (MSE):

LMSE (h (x;θ) ,a) =
∑
k

(ak − gk)
2
, (S1)

where a ≡ (a1, · · · , am) denotes the label of the input x in the form of one-hot encoding, h denotes the hypothesis func-
tion determined by the QNN (with parameters collectively denoted by θ), and g ≡ (g1, · · · , gm) = diag(ρout) presents
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FIG. S1. Schematics of three encoding strategies for QNN classifiers. a, The amplitude-encoding QNN structure, where we assume the
input state already encodes the data, followed by a variational QNN circuit; b, The “encoding first” block-encoding QNN structure, where
the first part of the QNN is used to encode the data, followed by a variational part to be trained; c, The “interleaved” block-encoding QNN
structure, where the data-encoding blocks and variational blocks are interleaved.

the probabilities of the output categories in the standard basis with ρout denoting the output state [13]. More specifi-
cally, for amplitude-encoding schemes, gk = hk (|ψx〉;θ) = 〈x|U†θOkUθ |x〉; meanwhile, for block-encoding schemes,
gk = hk (x;θ) = 〈0|U†θ,xOkUθ,x |0〉. The MSE clearly exhibits the goal of the training, i.e., minimizing the difference
between the target predictions and QNN’s outputs.

In our work, we choose the cross entropy as the loss function:

LCE (h (x;θ) ,a) = −
∑
k

ak log gk, (S2)

and for binary classifications, it can be written as

LCE (h (x;θ) ,a) = −a1 log g1 − a2 log g2. (S3)
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Algorithm 1 Quantum neural network classifier for classifying the medical data
Input: The model h with parameters θ, the loss function L, the number of samples n, the training set {(xm,am)}nm=1, the batch size nb, the

number of iterations T , the learning rate ε, and the Adam optimizer fAdam

Output: The trained model
1: Initialization: generate random initial parameters for θ
2: for i ∈ [T ] do
3: Divide the 260 variational parameters into 10 parameter-batches {b1, b2, ..., b10}, with each parameter-batch denoting the parameters

encoded on the same qubit (i.e., the same row in the QNN circuit)
4: for j ∈ [10] do
5: Randomly choose nb samples {x(i,j,1),x(i,j,2), ...,x(i,j,nb)} among the n samples in the training set
6: Calculate the gradients for parameter-batch bj in experiments using the “parameter shift rule”, and take the average value over the

training batch G← 1
nb

Σ
nb
k=1∇L(h(x(i,j,k); bj),a(i,j,k))

7: Updates: bj ← fAdam(bj , ε,G)
8: end for
9: end for

10: Output the trained model

Algorithm 2 Quantum neural network classifier for classifying the MNIST data
Input: The model h with parameters θ, the loss function L, the number of samples n, the training set {(xm,am)}nm=1, the batch size nb, the

number of iterations T , the learning rate ε, and the Adam optimizer fAdam

Output: The trained model
1: Initialization: generate random initial parameters for θ
2: for i ∈ [T ] do
3: Randomly choose nb samples {x(i,1),x(i,2), ...,x(i,nb)} among the n samples in the training set
4: Choose 50 variational parameters among the 260 available ones, which lie at the 3rd, 6th, 11th, 17th, 23rd columns of the QNN circuit
5: Calculate the gradients in experiments using the “parameter shift rule”, and take the average value over the training batch G ←

1
nb

Σ
nb
k=1∇L(h(x(i,k);θ),a(i,k))

6: Updates: θ ← fAdam(θ, ε,G)
7: end for
8: Output the trained model

If a new sample belongs to class 1, i.e., a1 = 1, a2 = 0. Then the loss function can be further reduced to

LCE (h (x;θ) ,a) = −a1 log g1. (S4)

To minimize the loss function, we adapt the gradient descent method. Here, computing the derivatives of L with respect to
the circuit parameters can be transformed into computing the derivatives of some expectation values with respect to these circuit
parameters according to the chain rule. In our case, it can be formally expressed as

∂LCE (h (x;θ) ,a)

∂θ
= −

∑
k

ak
gk

∂gk
∂θ

. (S5)

The next step that computes the derivatives of gk with respect to the circuit parameters can be accomplished with the “parameter
shift rule”, since gk can be regarded as an expectation value of an observable which we denote as Bk here [56–58]. This rule
states that if a gate with parameter θ is in the form G(θ) = e−i

θ
2Pn with Pn being an n-qubit Pauli string, the derivative can be

evaluated by:

∂gk
∂θ

=
∂〈Bk〉
∂θ

=
〈Bk〉+ − 〈Bk〉−

2
, (S6)

where 〈Bk〉± denotes the expectation values ofBk (i.e., 〈Ψ| Ok |Ψ〉) with the parameter θ being θ±π
2 . Thus, since the parameters

in our case are all encoded in the angles of single-qubit Pauli-rotation gates, we can optimize the QNN classifier with gradients

obtained from measurements. Compared with finite difference methods such as ∂〈B〉
∂θ ≈

〈B〉
θ+ ∆θ

2
−〈B〉

θ−∆θ
2

∆θ , the “parameter shift
rule” provides exact gradients without discretization error, and it is convenient to be implemented on the near-term quantum
devices.
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FIG. S2. Benchmarks for “interleaved” block-encoding QNN structures and “encoding first” block-encoding QNN structures with
the MNIST dataset. a-d, For each figure, we assign random initial parameters to an “interleaved” block-encoding QNN classifier and the
accuracy and loss curves are separately shown. e-h, For each figure, we assign random initial parameters to an “encoding first” block-encoding
QNN classifier and the accuracy and loss curves are separately shown.
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FIG. S3. Benchmarks for “interleaved” block-encoding QNN structures and “encoding first” block-encoding QNN structures with
the MNIST dataset. a, We assign random initial parameters to an “interleaved” block-encoding QNN classifier for ten times, and exhibit
the accuracy and loss curves averaged over them as well as the standard bias. b, For each figure, we assign random initial parameters to an
“encoding first” block-encoding QNN classifier for ten times, and exhibit the accuracy and loss curves averaged over them as well as the
standard bias.

Next, we can update the trainable parameters θ by gradient descent:

θt+1 = θt − ε · ∇L (θt) , (S7)

where θt denotes collectively the parameters at the t-th step, ε is the learning rate. In practice, we take the Adam optimizer for
higher training performance [59].

3. Algorithms and benchmarks

In our experiments, we have designed a QNN structure exhibited in the main text. For the two training tasks, we deploy two
slightly different algorithms for the medical dataset and the MNIST handwritten digit dataset, respectively. The pseudocode
for training on the medical dataset is shown in Algorithm 1, where we use 260 parameters (divided into 10 batches according
to the 10 qubit indexes, each with 26 parameters) for updating. The pseudocode for training on the MNIST handwritten digit
dataset is show in Algorithm 2, where we limit the number of variational parameters to 50 to reduce the time cost. In both the
two algorithms, the superconducting platform provides high circuit fidelity to calculate the gradients and to optimize the QNN
circuit, providing a foundation for further works including demonstrating adversarial attacks and adversarial training.

For block-encoding schemes, we have proposed an “interleaved” block-encoding QNN structure to encode the classical data
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FIG. S4. Benchmarks for “interleaved” block-encoding QNN structures and “encoding first” block-encoding QNN structures with the
FashionMNIST dataset. a-d, For each figure, we assign random initial parameters to an “interleaved” block-encoding QNN classifier and the
accuracy and loss curves are separately shown. e-h, For each figure, we assign random initial parameters to an “encoding first” block-encoding
QNN classifier and the accuracy and loss curves are separately shown.
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FIG. S5. Benchmarks for “interleaved” block-encoding QNN structures and “encoding first” block-encoding QNN structures with the
FashionMNIST dataset. a, For each figure, we assign random initial parameters to an “interleaved” block-encoding QNN classifier for ten
times, and exhibit the accuracy and loss curves averaged over them as well as the standard bias. b, For each figure, we assign random initial
parameters to an “encoding first” block-encoding QNN classifier for ten times, and exhibit the accuracy and loss curves averaged over them as
well as the standard bias.

into the QNN circuit. The reason why we choose this structure over the “encoding first” block-encoding QNN structure is
explained as follows:

The “encoding first” block-encoding QNN structure corresponds to the unitary Ux,θ = WθVx, with Wθ and Vx being the
variational part and the encoding part, respectively. Without loss of generality, we assume the initial input state is |0〉. The
expectation value of the output state on observable O is g = h (|0〉,x;θ) = 〈0|V †xW

†
θOWθVx |0〉. Given a threshold b, the

classification decision is made according to whether g > b or g < b. From the view of a support vector machine (SVM),
the “encoding first” QNN model can be described by a SVM with a kernel matrix K where Kij = | 〈0|V †xiVxj |0〉 |

2 [6, 60,
61]. In Ref. [6], the authors pointed out that if the inner product of these states can be evaluated efficiently on a classical
computer, then the quantum model can not provide an advantage over classical SVMs. For our purpose, we aim to design a
QNN classifier with high expressive power. From the above discussion, we see that in the “encoding first” case, once the data
is encoded, the performance of the QNN classifier is already upper-bounded by a classical SVM whose kernel matrix is fixed
and difficult to predefine. In practice, this QNN classifier may perform worse than the corresponding classical SVM since the
“linear coefficients” contained in W †θOWθ are constrained by the W †θOWθ’s Hermitian property. On the other hand, with an
“interleaved” block-encoding QNN structure, we can decompose the unitary U ′x,θ = W ′θV

′
x,θ for clarity. Intuitively, in this

way not only the “linear coefficients” contained in W ′†θ OW ′θ can be adjusted during the training process, the kernel K′ where

K′ij =
∣∣∣〈0

∣∣∣V †xi,θ†V ′xj ,θ∣∣∣ 0〉∣∣∣2 can also be optimized, adapting the kernel space for better performance.
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Algorithm 3 Generating type-1 adversarial examples with gradient descent method
Input: The model h with trained parameters θ∗, the loss function L, the number of iterations T , the learning rate ε, the Adam optimizer fAdam,

and a legitimate sample x with label a
Output: The adversarial example xadv

1: Initialization: xadv ← x
2: for i ∈ [T ] do
3: Calculate the gradients of the loss function L with respect to the vector elements of the input sample Gx ← ∇xL(h(xadv;θ∗),a)
4: Updates: xadv ← fAdam(xadv, ε,−Gx)
5: end for
6: Output xadv

Algorithm 4 Generating type-2 adversarial examples with gradient descent method
Input: The model h with trained parameters θ∗, the loss function L, the number of iterations T , the learning rate ε, the Adam optimizer fAdam,

and a legitimate sample x with label a
Output: The adversarial example xadv

1: Initialization: xadv ← x
2: for i ∈ [T ] do
3: Calculate the gradients of the loss function L with respect to the vector elements of the input sample Gx ← ∇xL(h(xadv;θ∗),a)
4: Generate a vector Sarea such that Sarea[i]← 1 if the area of the object in x covers index i and Sarea[i]← 0 otherwise
5: Updates: xadv ← fAdam(xadv, ε,−Gx · Sarea)
6: end for
7: Output xadv

Here, to illustrate the performances with different encoding strategies, we provide numerical simulations to benchmark the
performances of the “interleaved” block-encoding QNN structure and the “encoding first” block-encoding QNN structure. We
first design a QNN circuit with 540 parameters, where we can use 270 of them to encode the input data and 270 as variational
parameters. To create an “interleaved” block-encoding QNN classifier, we divide the circuit into 9 blocks with each block
encoding 30 input elements and 30 variational parameters. As for a “encoding first” block-encoding QNN classifier, we simply
use the first 270 parameters in the circuit to encode the input data and leave the rest 270 ones as variational parameters. We
choose two datasets, the MNIST handwritten digit dataset and the FashionMNIST dataset, of which each has a 1000-sample
training set and a 400-sample test set. The learning rate is set to 0.003 assisted by the Adam optimizer [59]. The training
procedure is exhibited in Fig. S2, Fig. S3 and Fig. S4, Fig. S5, from which it is obviously shown that the performances of the
“encoding first” block-encoding QNN classifier are comparably lower than the “interleaved” one in practical high-dimensional
numerical simulations. It should be noted that these results does note rule out the practical applications of “encoding first” block-
encoding strategy, since here our goal is to design effective QNN classification schemes to classify high-dimensional datasets
on near-term quantum devices. The performance of the “encoding first” block-encoding strategy is closely related to the kernel
matrix that the data-encoding block provides. With carefully-designed “encoding first” QNN structures, this encoding strategy
may map a complex dataset to an easy-to-handle kernel space, even with potential quantum advantages [5].

B. Quantum adversarial machine learning

Adversarial machine learning studies the vulnerability of machine learning models as well as developing possible defense
strategies [18, 62–64]. Early studies of adversarial learning date back to the spam detection problem, where the system tries to
identify whether an uploaded email is spam while some malicious parties tries to change some keywords to escape the detection.
With the recent rise in deep learning, some powerful neural networks are able to classify high-dimensional and complex images,
bringing various applications to the modern society from face recognition to self-driving cars. However, the vulnerability of
machine learning models poses great challenges for the security and reliability of these applications: For example, suppose a
neural network model is able to identify the type of disease in a medical image from a patient’s X-ray examination. By adding
a carefully-designed and imperceptible perturbation to this image, the model may output a wrong diagnosis, leading to potential
risks to the patient’s health.

As mentioned in the main text and in the above subsections, quantum machine learning has achieved dramatic success over
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FIG. S6. Illustration of two types of adversarial attacks used in this work. a, A type-1 adversarial example designed according to Algorithm
3. b, A type-2 adversarial example designed according to Algorithm 4.

the past decade, with arising works exhibiting the potential quantum advantages over their classical counterparts [5, 65]. When
the quantum machine learning models are able to solve certain practical problems and serve in commercial applications, the vul-
nerability of these models should also be granted serious consideration. In this subsection, we will briefly introduce adversarial
attacks and defense strategies in QNN classifiers as well as the detailed settings of them in our experimental demonstrations.

1. Adversarial attacks

In general, given a QNN model h (x;θ), we wish to optimize the parameters collectively denoted by θ such that the loss
function L (h (x;θ) ,a) is minimized over the training set, i.e., to minimize the distance between the current output and the
target output. By reverse thinking, the idea of adversarial attack is to generate a small perturbation on the input x to maximize the
distance between the current output and the target output, which can be accomplished by designing a perturbation to maximize
the loss function. As mentioned in the main text, this idea can be formalized as

δ ≡ argmax
δ′∈∆

L (h (x + δ′;θ∗) ,a) , (S8)

where θ∗ denotes the parameters of a trained model and ∆ restricts the perturbation within a limited region.
In our work, we generate two versions of adversarial examples to experimentally demonstrate the vulnerability of QNN

classifiers and the adversarial training. For the first one, as shown in Algorithm 3, we calculate the gradients of the loss function
with respect to the input sample and use gradient ascent to maximize the loss function. The perturbations are added on the
entire image, and we mark them as the type-1 adversarial examples. For the second one, as shown in Algorithm 4, we similarly
calculate the gradients of the loss function with respect to the input sample and use gradient ascent methods to maximize the
loss function. The difference is that in this case, we only add perturbation to the area where the object in the image lies in, e.g.,
for a handwritten digit image, we only add perturbation on the “number” part. The perturbations are added locally on part of the
image, and we mark them as the type-2 adversarial examples. In Fig. S6, we provide an illustrative example to visualize these
two strategies. We use the type-1 adversarial examples to implement the adversarial training. Moreover, in the main text, we
utilize 50 type-1 adversarial examples to exhibit the experimental results of adversarial attacks (Fig. 2f). The type-2 adversarial
examples are mainly used for exhibitions in Fig. 2e and Fig. 4b.

2. Defense strategies

As discussed in the main text, the machine learning models are vulnerable to adversarial attacks. To defend against these
potential attacks, a number of methods have been proposed to enhance the robustness of machine learning models. Notable
examples include adversarial training [28], gradient hiding [66], and defensive distillation [49]. In our experiments, we have
demonstrated that QNN classifiers, similar to classical deep learning models, are vulnerable to adversarial attacks. For the
defense strategies, in the main text, we have demonstrated the adversarial training, which turns out to effectively enhance the
QNN classifier’s robustness. Here, we provide the detailed algorithms and discussions of the QNN’s adversarial training.
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Algorithm 5 Adversarial training of the medical data
Input: The model h with parameters θ, the loss function L, the number of samples n, the training set {(xm,am)}nm=1, the batch size nb, the

number of iterations T , the learning rate ε, and the Adam optimizer fAdam

Output: The trained model
1: Initialization: generate random initial parameters for θ
2: Generate adversarial examples {(xadv

m ,am)}nm=1 and combine it with the original training set to form an adversarial training set Dadv =
{(xm,am), (xadv

m ,am)}nm=1 which has 2n samples
3: for i ∈ [T ] do
4: Divide the 260 variational parameters into 10 parameter-batches {b1, b2, ..., b10}, with each parameter-batch denoting the parameters

encoded on the same qubit (i.e., the same row in the QNN circuit)
5: for j ∈ [10] do
6: Randomly choose nb samples {x(i,j,1),x(i,j,2), ...,x(i,j,nb)} among the 2n samples in the adversarial training set Dadv

7: Calculate the gradients for parameter-batch bj in experiments using the “parameter shift rule”, and take the average value over the
training batch G← 1

nb
Σ
nb
k=1∇L(h(x(i,j,k); bj),a(i,j,k))

8: Updates: bj ← fAdam(bj , ε,G)
9: end for

10: end for
11: Output the trained model

Algorithm 6 Adversarial training of the MNIST data
Input: The model h with parameters θ, the loss function L, the number of samples n, the training set {(xm,am)}nm=1, the batch size nb, the

number of iterations T , the learning rate ε, and the Adam optimizer fAdam

Output: The trained model
1: Initialization: generate random initial parameters for θ
2: Generate adversarial examples {(xadv

m ,am)}nm=1 and combine it with the original training set to form an adversarial training set Dadv =
{(xm,am), (xadv

m ,am)}nm=1 which has 2n samples
3: for i ∈ [T ] do
4: Randomly choose nb samples {x(i,1),x(i,2), ...,x(i,nb)} among the 2n samples in the adversarial training set Dadv

5: Choose 50 variational parameters among the 260 available ones, which lie at the 3rd, 6th, 11th, 17th, 23rd columns of the QNN circuit
6: Calculate the gradients in experiments using the “parameter shift rule”, and take the average value over the training batch G ←

1
nb

Σ
nb
k=1∇L(h(x(i,k);θ),a(i,k))

7: Updates: θ ← fAdam(θ, ε,G)
8: end for
9: Output the trained model

For the adversarial training of both the medical dataset and the MNIST handwritten digit dataset, the basic framework is the
same as Algorithm 1 and Algorithm 2, respectively. The difference is that we change the original legitimate training set to
a combination of the original training set and the adversarial examples, as shown in Algorithm 5 and Algorithm 6. For both
two datasets, we generate type-1 adversarial examples for adversarial training. To test the performance, first we can directly
check the result in the test set whose adversarial examples follow the same distribution as the adversarial data in the training set.
Moreover, we generate type-2 adversarial examples and check the retrained QNN’s performance on these examples. The latter
one is also able to test the transferability of adversarial training from a known adversarial attack to an unknown one in some
sense.

II. THEORETICAL DETAILS FOR QUANTUM NEURAL NETWORKS HANDLING QUANTUM DATA

In the above section, we have already presented the basic concepts for the QNN based supervised learning, quantum adversar-
ial learning, as well as some results from numerical simulations. In this section, we focus on QNN classifiers handling quantum
datasets, where some overlaps with the above section will not be mentioned again.
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Algorithm 7 Quantum neural network classifier for classifying the quantum data
Input: The model h with parameters θ, the loss function L, the number of samples n, the training set {(|xm〉 ,am)}nm=1, the batch size nb,

the number of iterations T , the learning rate ε, and the Adam optimizer fAdam

Output: The trained model
1: Initialization: generate random initial parameters for θ
2: for i ∈ [T ] do
3: Divide the 150 variational parameters into 10 parameter-batches {b1, b2, ..., b10}, with each parameter-batch denoting the parameters

encoded on the same qubit (i.e., the same row in the QNN circuit)
4: for j ∈ [10] do
5: Randomly choose nb samples {|x(i,j,1)〉 , |x(i,j,2)〉 , ...,

∣∣x(i,j,nb)

〉
} among the n samples in the training set

6: Calculate the gradients for parameter-batch bj in experiments using the “parameter shift rule”, and take the average value over the
training batch G← 1

nb
Σ
nb
k=1∇L(h(|x(i,j,k)〉 ; bj),a(i,j,k))

7: Updates: bj ← fAdam(bj , ε,G)
8: end for
9: end for

10: Output the trained model

Algorithm 8 Generating adversarial examples for the quantum data
Input: The model h with trained parameters θ∗, the loss function L, the number of iterations T , the learning rate ε, the Adam optimizer fAdam,

a coefficient κ to control the range of the perturbation angles in the single qubit gates, and a legitimate sample |x〉 with label a
Input: Prepare a perturbation layer Uψ which only contains single-qubit perturbations and all elements in ψ are initialized to zero such that

the initial perturbation layer is equal to an identity operator, and an element ψi is mapped to a single-qubit rotation angle by κ sinψi such
that the range of the perturbation angles in the single qubit gates can be upper bounded by κ

Output: The adversarial example
∣∣xadv

〉
1: Initialization: Prepare the Néel state |N〉 and denote the evolution under the Hamiltonian of the AA model as UAA

2: for i ∈ [T ] do
3: Calculate the gradients of the loss function L with respect to the parameters in the perturbation layer

Gψ ← ∇ψL(h(UAAUψ |N〉 ;θ∗),a)
4: Updates: ψ ← fAdam(ψ, ε,−Gψ)
5: end for
6: Output

∣∣xadv
〉
← UAAUψ |N〉

A. Quantum neural network classifiers

When handling a quantum dataset, we assume that the input data is already prepared into quantum states. Thus, unlike the
classical data’s case, we do not need to encode the data into the QNN circuit, but use an amplitude-encoding QNN structure
shown in Fig. S1a to process the input quantum states. During the training process, we similarly utilize the parameter shift rule
to calculate the gradients and optimize the QNN’s parameters according to the strategy shown in Algorithm 7. In the following
section of experimental details, we will exhibit the detailed structure handling the quantum dataset sampled from two distinct
phases of Aubry-André model.

B. Adversarial examples

As illustrated in the main text, the trained QNN classifier is able to classify the localized and thermal states with decent
accuracy. Furthermore, our goal is to generate adversarial examples that keep the original states’ property while lead the classifier
to make incorrect predictions. To achieve this, we choose to design local perturbations during the state preparation process. For
concreteness, the legitimate quantum data is generated by preparing the system to the Néel state and steering the system to
evolve under the Hamiltonian of the AA model. For the adversarial data, after preparing the system to the Néel state, we add
local perturbations to each qubit and then continue the steering process. These perturbations are initially set as identity operators
and contain parameters that can be optimized to maximize the loss function. The strategy for generating adversarial examples is
summarized in Algorithm 8 with the experimental performance exhibited in the main text.
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III. EXPERIMENTAL DETAILS

A. Device information

Our experiment is performed on a multi-qubit superconducting processor, with 6 × 6 transmon qubits arranged in a square
lattice and 60 couplers each inserted inbetween neighboring two qubits. Each qubit has nonlinearity around −210 MHz, with
individual microwave line for XY gates and flux line for frequency tunability and Z gates; each coupler is also a transmon qubit
whose nonlinearity is around−250 MHz, with individual flux line for frequency adjustment in the range from∼4 to 6.5 GHz that
is critical for turning on and off the effective coupling between the neighboring two qubits. We use tantalum film to pattern base
wirings for high coherence and details on the device fabrication can be found in Ref. [67]. To realize the “interleaved” block-
encoding QNN structure, we select a chain of L (= 10) qubits, Qj where j = 1, 2, . . . , 10, as shown in Fig. S7. Characteristic
parameters for these L qubits are listed in Tab. S1.
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FIG. S7. Layout of the multi-qubit superconducting processor. The L (= 10) qubits and L−1 couplers used for the experiment are colored
in red and blue, respectively.

B. Experiment circuit

A fundamental QNN block for the chain topology is shown in Fig. S8, which consists of multiple layers of simultaneous
single-qubit rotational gates, followed by two layers of CNOT gates running through L− 1 neighboring qubit pairs. The single-
qubit rotational (XY and Z) gates include Rx, Ry , and Rz , which rotate the qubit state by arbitrary angles around x-, y- and
z-axis, respectively. The CNOT gate is composed of a generic two-qubit controlled π-phase (CZ) gate sandwiched inbetween
two Hadamard gates, the later of which are realized by three single-qubit rotations Rx(π/2)Rz(π/2)Rx(π/2). Experimentally,
we initialize the L qubits to the ground state at their respective idle frequencies ω0

j , where all single-qubit rotational gates
are applied. When necessary, we bias qubit pairs to the frequency values listed in either ωA

ij or ωB
ij for CZ gates, where the

superscripts A/B refers to the group of qubit pairs whose CZ gates are implemented in parallel. While running multiple CZ gates
in parallel, we apply dynamical decoupling sequences (see green boxes labeled as “DD” in Fig. S8) featuring two segments of
microwave drives with opposite phases to the qubits that are idling, elongating the effective dephasing times of these qubits [68].

To encode the classical medical data which are pictures of 16× 16 grayscale pixels, we repeat the fundamental block 4 times
to construct a variant of the QNN classifier (Fig. S8). The first block (each of the rest 3 blocks) contains 10 × 8 (10 × 6)
single-qubit rotational gates selected from {Rx, Rz}, so that the QNN classifier can encode up to 260 rotation angle parameters
which sufficiently cover the components of a normalized vector x converted from 16 × 16 grayscale pixels, with the unused
angle parameters preset to zero. In addition, in this variant the data-encoding blocks and variational blocks are merged together,
i.e., the input x and trainable parameters θ are summed up with certain weights as the input parameters for the rotation angles.

To further reduce the circuit depth for the experiment, as illustrated by dashed line boxes in Fig. S8, consecutive single-qubit
gates are compiled and replaced by two single-qubit rotations Rz (θ)Rφ (θ′) featuring three independent parameters θ, θ′ and
φ, where the subscript φ refers to an equatorial rotation axis that has an angle φ with respect to x-axis.
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TABLE S1. Characteristic device parameters. ω0
j is the idle frequency where Qj is initialized and operated with the single-qubit rotational

gates. Nonlinearity ηj of Qj is defined as the frequency difference between the |1〉-|2〉 and |0〉-|1〉 transitions. T1,j is the energy relaxation
time measured for Qj around ω0

j and TDD
2,j is the dynamical decoupling (DD) dephasing time [68] of Qj at ω0

j . F0,j and F1,j are the readout
fidelity values for Qj prepared in |0〉 and |1〉, respectively; these fidelity values are used to correct raw probabilities to eliminate readout errors
as done previously [69]. ωA (B)

ij lists the estimated frequency values for Qi and Qj in group A (B) at which the CZ gate is implemented. Pauli
errors of the single-qubit gates (e1) and those of the two-qubit CZ gates (eA (B)

2 ) are characterized via simultaneous cross entropy benchmarking.

Qubit Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Mean

ω0
j /2π (GHz) 4.260 4.390 4.545 4.690 4.380 4.280 4.120 4.400 4.250 3.990

ηj/2π (GHz) -216 -213 -211 -209 -213 -213 -216 -212 -216 -220 -214

T1,j (µs) 153 141 131 132 159 172 173 158 153 152 152

TDD
2,j (µs) 91 54 121 105 95 93 99 127 143 75 100

F0,j 0.976 0.976 0.993 0.994 0.987 0.990 0.977 0.989 0.990 0.983 0.986

F1,j 0.944 0.960 0.983 0.984 0.979 0.972 0.947 0.972 0.963 0.967 0.967

simultaneous 1Q XEB e1 (%) 0.06 0.07 0.09 0.07 0.06 0.11 0.09 0.08 0.08 0.06 0.08

ωA
ij/2π (GHz) 4.260, 4.465 4.580, 4.781 4.430, 4.225 4.175, 4.378 4.235, 4.030

ωB
ij/2π (GHz) 4.370, 4.574 4.591, 4.390 4.271, 4.065 4.403, 4.200

simultaneous 2Q XEB eA
2 (%) 0.52 0.65 0.72 0.77 0.71

0.72
simultaneous 2Q XEB eB

2 (%) 0.88 0.74 0.86 0.64

Since the input state already encodes the data, the QNN classifier for quantum data training employs 5 variational blocks with
10× 3 single-qubit gates (30 training parameters) in each block, which amount to 150 training parameters as shown in Fig. S9.
Below we focus on characterizing the single- and two-qubit gates, which are the most critical elements required in the QNN
classifiers.

1. Single-qubit gates

The single-qubit XY gates (Rx and Ry) are realized by 30 ns-long microwave pulses with Gaussian envelopes, where the
quadrature correction terms with DRAG coefficients are implemented to minimize state leakage to higher levels [70]. Due to the
existence of microwave crosstalk, during the implementation of random XY gates on multiple qubits simultaneously, individual
qubits are susceptible to the off-resonant microwave pulses applied to the drive lines that are designed to address other qubits,
necessitating an active microwave cancellation technique [34, 71, 72]. Here we quantify the microwave crosstalk with a complex
matrix M defined as Ω̃actual = M · Ω̃applied, where Ω̃applied (Ω̃actual) is a column vector containing the microwave tones applied to
(actually sensed by) all the qubits. Suppose we apply on Qj a microwave tone Ωj(t), the tone sensed by Qk due to the crosstalk
effect can be written as Ωk(t) = MkjΩj(t), where Mkj = Akje

iϕkj is a complex factor with Akj and ϕkj being the crosstalk
amplitude and phase, respectively. To characterizeAkj and ϕkj , we use the sequence fidelity of Qk in randomized benchmarking
(RB) as a fitness metric while Qj is also subject to RB pulses, and find that the microwave crosstalk matrix M is sparse and has
an average amplitude of around 4% among the non-zero off-diagonal terms.

Based on the calibrated microwave crosstalk matrix M and the active microwave cancellation technique, we have verified
via cross entropy benchmarking (see below) that our single-qubit XY Pauli errors, e1, are averaged to be 0.08% for the case of
implementing random XY gates on all 10 qubits simultaneously (Tab. S1).

The single-qubit Z gates (Rz) are mostly implemented via virtual Z gates [73] in the QNN classifiers. We have also bench-
marked Rz(π/2) realized by 20 ns-long square pulses, yielding an average Pauli error of 0.03% for the case of simultaneously
running on all 10 qubits, which is better than that for the XY gates as microwave crosstalk is not a concern here.
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FIG. S8. Experiment circuit to encode classical data and realize the quantum neural network classifier for leaning medical data. We
apply dynamical decoupling (DD) sequences to the qubits that are idling to elongate the effective dephasing times.
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FIG. S9. Experiment circuit to generate quantum states and realize the quantum neural network classifier for quantum data training.
Here UAA = e−iHτ represents the evolution under the Aubry-André (AA) Hamiltonian (Eq. 3 in the main text) for a fixed time τ = 400 ns.
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2. Two-qubit CZ gate

The CZ gate between two neighboring qubits Qj and Qj+1 is realized by dynamically steering the resonant frequency of the
coupler, C, along a well-designed trajectory, so that the effective coupling strength can be turned on for a specific amount of time.
Here we describe the procedure of parametrizing the CZ process to maximize its gate fidelity. We use the notation |Qj ,C,Qj+1〉
to represent the dressed state of the three-body system, and assume that Qj has the lowest frequency. During the CZ process,
small square flux (z) pulses are applied to Qj and Qj+1 so that |101〉 and |002〉 are near resonance, while a sine decorated square
flux (z) pulse with the form

z(t) = z0

[
1− r + r sin

(
π

t

tgate

)]
(S9)

is applied to C to lower its frequency from ∼5.8 GHz to ∼4.6 GHz, where tgate = 50 ns and r is an optimization parameter
typically ∼0.1. We add 5 ns zero-paddings before and after tgate when concatenating gates. Here z0 is tuned to minimize the
leakage from |101〉 to |002〉, while the z pulse amplitude (zpa) of Qj+1 (or Qj) is adjusted to maximize qubit entanglement.
Below we illustrate a couple of key steps during the repeated optimization process (see Fig. S10):

1. Optimizing z0: After coarse adjustment of all parameters, we prepare |101〉, run the CZ pulses for m cycles with m ∈
{1, 3, 5, 7}, and finally measure the |0〉-state probability of Qj , P0. We identify the optimal z0 at which the averaged P0

reaches minimum, indicating the lowest state leakage (see Fig. S10b and inset).

2. Optimizing zpa of Qj+1 (or Qj): With z0 obtained from step 1, we prepare both qubits in (|0〉 − i|1〉) /
√

2 and the coupler
in |0〉, run the CZ pulses for m cycles with m ∈ {1, 3, 5}, and finally perform tomographic measurement on Qj to extract
the off-diagonal ρ01 of its density matrix. We identify the optimal zpa of Qj+1 (or Qj) at which the averaged |ρ01| reaches
minimum (see Fig. S10c and inset).

CZ
𝐐𝟏

𝐐𝟐 𝜋

𝜋 𝐐𝟏

𝐐𝟐 Τ𝜋 2

Τ𝜋 2 Tomo.

𝐐𝟏

𝐐2

𝐂
Frequency

Time

a b c

FIG. S10. Tuning up the CZ gate for Q1 and Q2. a, CZ pulse sequence plotted in the frequency versus time domain. b, |0〉-state probability
of Q1, P0, as function of zpa and z0 at m = 1. Inset shows one-dimensional sweeps of P0 vs. z0 at different m values along the dashed line
in the main panel. c, Off-diagonal |ρ01| of Q1’s density matrix as function of zpa and z0 at m = 1. Inset shows one-dimensional sweeps of
|ρ01| vs. zpa at different m values along the dashed line in the main panel. Corresponding experimental sequences are shown on top for data
in b and c.

3. Quantum gate benchmarks

Here we focus on characterizing performance of the quantum gates via cross entropy benchmarking (XEB) [24, 74], in
particular when these gates are implemented on multiple qubits simultaneously. We verify that both XEB and RB yield very
similar error values in benchmarking our experimental gates, with an example shown in Fig. S11.

Simultaneous XEB results characterizing the quantum gates are shown in Fig. S12. For single-qubit gates, each
cycle in an XEB circuit consists of a π/2 rotation randomly chosen from the following set: Rφ

(
π
2

)
where φ ∈
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a b c

FIG. S11. Comparison of XEB and RB in benchmarking a two-qubit CZ gate. a, Interleaved RB data to characterize the CZ gate on Q1

and Q2. b, XEB data taken simultaneously on Q1 and Q2 to characterize the single-qubit gates. c, XEB data to characterize the CZ gate on
Q1 and Q2, where each cycle contains two single-qubit gates in parallel and a CZ gate. The CZ Pauli errors extracted from RB and XEB are
0.37% and 0.39%, respectively, which are consistent.

c3_4    0.0052
c4_3    0.0088
c6_3    0.0065
c8_3    0.0074
c9_4    0.0072
c9_6    0.0086
c8_7    0.0077
c7_8    0.0064
c6_9    0.0071
dtype: float64
mean: 0.0072

q3_5    0.0006
q3_3    0.0007
q5_3    0.0009
q7_3    0.0007
q9_3    0.0006
q9_5    0.0011
q9_7    0.0009
q7_7    0.0008
q7_9    0.0008
q5_9    0.0006
dtype: float64
mean: 0.0008

𝐐𝟏 𝐐𝟏𝟎

FIG. S12. Simultaneous XEB results of the single-qubit gates and the two-qubit CZ gates. We sample over 50 different random circuits
to calculate the sequence fidelity α as a function of cycle number m (circles) which is fitted to α = Apm (lines). The Pauli error per cycle
ec illustrated in each figure is calculated by (1− p)

(
1− 1/D2

)
. For the single-qubit gates, the Pauli errors per gate e1 in Tab. S1 are

just ec as listed in the figures. For the two-qubit CZ gates, the Pauli errors per gate e2 in Tab. S1 are calculated according to (1− ec) =
(1− ec,j) (1− ec,j+1) (1− e2), where ec,j (ec,j+1) refers to the Pauli error for Qj (Qj+1).

{0, 1
4π,

1
2π,

3
4π, π,

5
4π,

3
2π,

7
4π}. At the end of the circuit, a random single-qubit gate Rφ (θ) is applied to randomize the circuit

and achieve Porter-Thomas distribution required for XEB [24] with φ and θ subjected to the probability density function

f(φ, θ) =
1

4π
sin θ. (S10)

For two-qubit CZ gates, the single-qubit gate set used in each cycle is the same as the one mentioned above, and each cycle
contains a layer of two single-qubit gates followed by a CZ gate. Similarly, to approach Porter-Thomas distribution more quickly,
every XEB circuit ends with a layer of random single-qubit gates. We can calculate the sequence fidelity α with the measured
probabilities of bitstrings using the following relation

∑
q∈{0,1}n

pe (q) (Dps (q)− 1) = α

D ∑
q∈{0,1}n

ps (q)
2 − 1

 , (S11)

where D (= 2n) is the dimension of Hilbert space, ps(q) and pe(q) are the simulated and experimentally measured probabilities
of bitstring q, respectively, and the horizontal bar on the top denotes averaging over random circuits. We note that XEB can be
used to further tune up the CZ gates.
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Adversarial images

a b

c d

ො𝜎𝑧 : -0.20 → 0.42 ො𝜎𝑧 : 0.16 → -0.16

FIG. S13. Experimental results of the MNIST data training and adversarial quantum machine learning. a, Loss function (up) and
accuracy (down) for the training and testing data set at each epoch. b, Experimentally measured 〈σ̂z〉 of Q5 for the test data at epoch 0, 60 and
180. Data for digits “0” and “1” are colored in blue and red, respectively. c, Legitimate and adversarial samples with measured output 〈σ̂z〉
for Q5 of the trained quantum classifier. d, Loss function (up) and accuracy (down) for the legitimate and adversarial test data at each epoch.

C. MNIST data training

We select “0” and “1” from the MNIST digits to form the training and test data sets, with sample sizes of 500 and 100,
respectively. We start the training by assigning the QNN classifier with randomly generated trainable parameters. At each
epoch, we select 10 (50) digits to form the training (test) data randomly. While there are 260 trainable parameters (Fig. S8), we
find that a reduced number of parameters is enough to train the classifier. In practice, we set the learning rate to 0.02, and select
50 parameters to train, while unused parameters are initialized to randomly assigned values and remain unchanged throughout
the learning process. The experiment results are shown in Fig. S13a. We plot the loss function and accuracy of both the training
and test data measured at each epoch. As the loss function decreases slowly during the learning process, the accuracy increases
at a relatively faster speed and approaches to 1 after about 50 epochs. Further decrease of the loss function helps to enhance the
visibility of the classifier as witnessed by the instances in Fig. S13b. The trained QNN classifier can classify the total training
and test data sets accurately.

We also explore the behavior of the QNN classifier under the adversarial attacks. The adversarial samples are generated by
adding a small but carefully-designed perturbation to the digits. In this work, the perturbation is designed by maximizing the loss
function numerically, and the classifier indeed fails to classify resulted adversarial samples (see examples in Fig. S13c). Next we
include the adversarial samples and implement adversarial machine learning. We start the training by re-initialize the 50 trainable
parameters. At each epoch, we randomly select 5 (50) samples from the original data set and 5 (50) from the adversarial data set
to form the training (test) data. The loss function and accuracy for both the legitimate and adversarial samples measured at each
epoch are shown in Fig. S13d. The re-trained classifier can defend certain adversarial attacks better than the original classifiers.
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