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GREENER principles for environmentally 
sustainable computational science
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Ewan Birney6, Talia Caplan    7, Martin Juckes    8, Johanna McEntyre6, 
Andrew D. Morris5, Gerry Reilly5 & Michael Inouye1,2,3,4,9,10,11

The carbon footprint of scientific computing is substantial, but 
environmentally sustainable computational science (ESCS) is a nascent 
field with many opportunities to thrive. To realize the immense green 
opportunities and continued, yet sustainable, growth of computer science, 
we must take a coordinated approach to our current challenges, including 
greater awareness and transparency, improved estimation and wider 
reporting of environmental impacts. Here, we present a snapshot of where 
ESCS stands today and introduce the GREENER set of principles, as well as 
guidance for best practices moving forward.

Scientific research and development have transformed and immeasur-
ably improved the human condition, whether by building instruments 
to unveil the mysteries of the universe, developing treatments to fight 
cancer or improving our understanding of the human genome. Yet, 
science can, and frequently does, impact the environment, and the 
magnitude of these impacts is not always well understood. Given the 
connection between climate change and human health, it is becoming 
increasingly apparent to biomedical researchers in particular, as well 
as their funders, that the environmental effects of research should  
be taken into account1–5.

Recent studies have begun to elucidate the environmental impacts 
of scientific research, with an initial focus on scientific conferences 
and experimental laboratories6. The 2019 Fall Meeting of the American 
Geophysical Union was estimated to emit 80,000 metric tonnes of 
CO2 equivalent (tCO2e), equivalent to the average weekly emissions 
of the city of Edinburgh, UK7 (CO2e, or CO2-equivalent, summarizes 
the global warming impacts of a range of greenhouse gases (GHGs) 
and is the standard metric for carbon footprints, although its accu-
racy is sometimes debated8) The annual meeting of the Society for 
Neuroscience was estimated to emit 22,000 tCO2e, approximately 
the annual carbon footprint of 1,000 medium-sized laboratories9. 

The life-cycle impact (including construction and usage) of university 
buildings has been estimated at ~0.125 tCO2e m−2 yr−1 (ref. 10), and the 
yearly carbon footprint of a typical life-science laboratory at ~20 tCO2e 
(ref. 9). The Laboratory Efficiency Assessment Framework (LEAF) is a 
widely adopted standard to monitor and reduce the carbon footprint 
of laboratory-based research11. Other recent frameworks can help  
to raise awareness: GES 1point512 provides an open-source tool to 
estimate the carbon footprint of research laboratories and covers 
buildings, procurement, commuting and travel, and the Environmental 
Responsibility 5-R Framework provides guidelines for ecologically 
conscious research13.

With the increasing scale of high-performance and cloud com-
puting, the computational sciences are susceptible to having silent 
and unintended environmental impacts. The sector of information 
and communication technologies (ICT) was responsible for between 
1.8% and 2.8% of global GHG emissions in 202014—more than avia-
tion (1.9%15)—and, if unchecked, the ICT carbon footprint could grow 
exponentially in coming years14. Although the environmental impact 
of experimental ‘wet’ laboratories is more immediately obvious, with 
their large pieces of equipment and high plastic and reagent usage, the 
impact of algorithms is less clear and often underestimated. The risks 
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allow them to estimate their carbon footprint and be more environ-
mentally sustainable.

Most calculators that estimate the carbon footprint of computa-
tions are targeted at machine learning tasks and so are primarily suited 
to Python pipelines, graphics processing units (GPUs) and/or cloud 
computing36,37,39,40. Python libraries have the benefit of integrating 
well into machine learning pipelines or online calculators for cloud 
GPUs21,41. Recently, a flexible online tool, the Green Algorithms calcu-
lator35, enabled the estimation of the carbon footprint for nearly any 
computational task, empowering sustainability metrics across fields, 
hardware, computing platforms and locations.

Some publications, such as ref. 38, have listed simple actions 
that computational scientists can take regarding their environmental 
impact, including estimating the carbon footprint of running algo-
rithms, both a posteriori to acknowledge the impact of a project and 
before starting as part of a cost–benefit analysis. A 2020 report from 
The Royal Society formalizes this with the notion of ‘energy propor-
tionality’, meaning the environmental impacts of an innovation must 
be outweighed by its environmental or societal benefits34. It is also 
important to minimize electronic waste by keeping devices for longer 
and using second-hand hardware when possible. A 2021 report by the 
World Health Organization42 warns of the dramatic effect of e-waste 
on population health, particularly children. The unregulated informal 
recycling industry, which handles more than 80% of the 53 million 
tonnes of e-waste, causes a high level of water, soil and air pollution, 
often in low- and middle-income countries43. The up to 56 million 
informal waste workers are also exposed to hazardous chemicals 
such as heavy metals and persistent organic pollutants42. Scientists 
can also choose energy-efficient hardware and computing facilities, 
while favoring those powered by green energy. Writing efficient code 
can substantially reduce the carbon footprint as well, and this can be 
done alongside making hardware requirements and carbon footprints  
clear when releasing new software. The Green Software Foundation 
(https://greensoftware.foundation) promotes carbon-aware coding 
to reduce the operational carbon footprint of the softwares used in 
all aspects of society. There is, however, a rebound effect to making 
algorithms and hardware more efficient: instead of reducing com-
puting usage, increased efficiency encourages more analyses to 

of seeking performance at any cost and the importance of consider-
ing energy usage and sustainability when developing new hardware 
for high-performance computing (HPC) was raised as early as 200716. 
Since then, continuous improvements have been made by developing 
new hardware, building lower-energy data centers and implementing 
more efficient HPC systems17,18. However, it is only in the past five years 
that these concerns have reached HPC users, in particular researchers. 
Notably, the field of artificial intelligence (AI) has first taken note of its 
environmental impacts, in particular those of the very large language 
models developed19–23. It is unclear, however, to what extent this has led 
the field towards more sustainable research practices. A small number 
of studies have also been performed in other fields, including bioinfor-
matics24, astronomy and astrophysics25–28, particle physics29, neuro
science30 and computational social sciences31. Health data science  
is starting to address the subject, but a recent systematic review found 
only 25 publications in the field over the past 12 years32. In addition to 
the environmental effects of electricity usage, manufacturing and 
disposal of hardware, there are also concerns around data centers’ 
water usage and land footprint33. Notably, computational science, 
in particular AI, has the potential to help fight climate change, for 
example, by improving the efficiency of wind farms, by facilitating low-
carbon urban mobility and by better understanding and anticipating 
severe weather events34.

In this Perspective we highlight the nascent field of environmen-
tally sustainable computational science (ESCS)—what we have learned 
from the research so far, and what scientists can do to mitigate their 
environmental impacts. In doing so, we present GREENER (Governance,  
Responsibility, Estimation, Energy and embodied impacts, New colla
borations, Education and Research; Fig. 1), a set of principles for how 
the computational science community could lead the way in sustain-
able research practices, maximizing computational science’s benefit 
to both humanity and the environment.

Environmental impacts of the computational 
sciences
The past three years have seen increased concerns regarding the  
carbon footprint of computations, and only recently have tools21,35–37 
and guidelines38 been widely available to computational scientists to 
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All actors in computational research have a key
role to play and can lead the e�orts towards

sustainable computing.

Embracing both individual and institutional
responsibility regarding the environmental impacts
of research. This involves being transparent about
these and initiating bold initiatives to reduce them.

Monitoring environmental impacts to identify
ine�iciencies and opportunities for improvement.

Minimizing energy needs of computations and
favoring low-carbon energy sources, while also
considering the broader environmental impacts
(e.g. water usage, mining of raw materials etc.).

Cooperating to leverage low-carbon
infrastructures, facilitate equitable access to low-
carbon computation and limit wasted resources.

Training all stakeholders to be aware of the
sustainability challenges of HPC and to be

equipped with the skills to tackle them.

Dedicate research e�orts to green computing to
improve our understanding of power usage,

support sustainable software engineering and
enable energy-e�icient research.

Cultural change: 
make environmental 
sustainability a core 
element of research

Fig. 1 | GREENER principles for ESCS. The GREENER principles enable cultural change (blue arrows), which in turn facilitates their implementation (green arrows) and 
triggers a virtuous circle.
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be performed, which leads to a revaluation of the cost–benefit but  
often results in increased carbon footprints. The rebound effect is a 
key example of why research practice should adapt to technological 
advances so that they lead to carbon footprint reductions.

GREENER computational science
ESCS is an emerging field, but one that is of rapidly increasing impor-
tance given the climate crisis. In the following, our proposed set of prin-
ciples (Fig. 1) outlines the main axes where progress is needed, where 
opportunities lie and where we believe efforts should be concentrated.

Governance and responsibility
Everyone involved in computational science has a role to play in  
making the field more sustainable, and many do already, from grass-
roots movements to large institutions. Individual and institutional 
responsibility is a necessary step to ensure transparency and reduction 
of GHG emission. Here we highlight key stakeholders alongside existing 
initiatives and future opportunities for involvement.

Grassroots initiatives led by graduate students, early career 
researchers and laboratory technicians have shown great success in 
tackling the carbon footprint of laboratory work, including Green Labs 
Netherlands44, the Nottingham Technical Sustainability Working Group 
or the Digital Humanities Climate Coalition45. International coalitions 
such as the Sustainable Research (SuRe) Symposium, initially set up 
for wet laboratories, have started to address the impact of comput-
ing as well. IT teams in HPC centers are naturally key, both in terms of 
training and ensuring that the appropriate information is logged so 
that scientists can follow the carbon footprints of their work. Principal 
investigators can encourage their teams to think about this issue and 
provide access to suitable training when needed.

Simultaneously, top–down approaches are needed, with fund-
ing bodies and journals occupying key positions in both incentivizing  
carbon-footprint reduction and in promoting transparency. Funding bod-
ies can directly influence the researchers they fund and those applying for 
funding via their funding policies. They can require estimates of carbon 
footprints to be included in funding applications as part of ‘environmental 
impacts statements’. Many funding bodies include sustainability in their 
guidelines already; see, for example, the UK’s NIHR carbon reduction 
guidelines1, the brief mention of the environment in UKRI’s terms and 
conditions46, and the Wellcome Trust’s carbon-offsetting travel policy47.

Although these are important first steps, bolder action is needed 
to meet the urgency of climate change. For example, UKRI’s digital 
research infrastructure scoping project48, which seeks to provide a 
roadmap to net zero for its digital infrastructure, sends a clear message 
that sustainable research includes minimizing the GHG emissions from 
computation. The project not only raises awareness but will hopefully 
result in reductions in GHG emissions.

Large research institutes are key to managing and expanding  
centralized data infrastructures and trusted research environments 
(TREs). For example, EMBL’s European Bioinformatics Institute  
manages more than 40 data resources49, including AlphaFold DB50, 
which contains over 200,000,000 predicted protein structures  
that can be searched, browsed and retrieved according to the FAIR 
principles (findable, accessible, interoperable, reusable)51. As a conse-
quence, researchers do not need to run the carbon-intensive AlphaFold 
algorithm for themselves and instead can just query the database. 
AlphaFold DB was queried programmatically over 700 million times 
and the web page was accessed 2.4 million times between August 2021 
and October 2022. Institutions also have a role in making procurement 
decisions carefully, taking into account both the manufacturing and 
operational footprint of hardware purchases. This is critical, as the 
lifetime footprint of a computational facility is largely determined by 
the date it is purchased. Facilities could also better balance investment 
decisions, with a focus on attracting staff based on sustainable and 
efficient working environments, rather than high-powered hardware52.

However, increases in the efficiencies of digital technology alone 
are unlikely to prove sufficient in ensuring sustainable resource use53. 
Alongside these investments, funding bodies should support a shift 
towards more positive, inclusive and green research cultures, recog-
nizing that more data or bigger models do not always translate into 
greater insights and that a ‘fit for purpose’ approach can ultimately 
be more efficient. Organizations such as Health Data Research UK 
and the UK Health Data Research Alliance have a key convening role in 
ensuring that awareness is raised around the climate impact of both 
infrastructure investment and computational methods.

Journals may incentivize authors to acknowledge and indeed esti-
mate the carbon footprint of the work presented. Some authors already 
do this voluntarily (for example, refs. 54–59), mostly in bioinformatics 
and machine learning so far, but there is potential to expand it to other 
areas of computational science. In some instances, showing that a 
new tool is greener can be an argument in support of a new method60.

International societies in charge of organizing annual conferences 
may help scientists reduce the carbon footprint of presenting their 
work by offering hybrid options. The COVID-19 pandemic boosted 
virtual and hybrid meetings, which have a lower carbon footprint 
while increasing access and diversity7,61. Burtscher and colleagues 
found that running the annual meeting of the European Astronomical 
Society online emitted >3,000-fold less CO2e than the in-person meet-
ing (0.582 tCO2e compared to 1,855 tCO2e)25. Institutions are starting 
to tackle this; for example, the University of Cambridge has released 
new travel guidelines encouraging virtual meetings whenever feasible 
and restricting flights to essential travel, while also acknowledging that 
different career stages have different needs62.

Industry partners will also need to be part of the discussion. 
Acknowledging and reducing computing environmental impact comes 
with added challenges in industry, such as shareholder interests and/
or public relations. While the EU has backed some initiatives help-
ing ICT-reliant companies to address their carbon footprint, such as 
ICTfootprint.eu, other major stakeholders have expressed skepticism 
regarding the environmental issues of machine learning models63,64. 
Although challenging, tech industry engagement and inclusion is 
nevertheless essential for tackling GHG emissions.

Estimate and report the energy consumption of algorithms
Estimating and monitoring the carbon footprint of computations is an 
essential step towards sustainable research as it identifies inefficien-
cies and opportunities for improvement. User-level metrics are crucial 
to understanding environmental impacts and promoting personal 
responsibility. In some HPC situations, particularly in academia, the 
financial cost of running computations is negligible and scientists 
may have the impression of unlimited and inconsequential computing  
capacity. Quantifying the carbon footprint of individual projects  
helps raise awareness of the true costs of research.

Although progress has been made in estimating energy usage and 
carbon footprints over the past few years, there are still barriers that 
prevent the routine estimation of environmental impacts. From task-
agnostic, general-purpose calculators35 and task-specific packages36,37,65 
to server-side softwares66,67, each estimation tool is a trade-off between 
ease of use and accuracy. A recent primer68 discusses these different 
options in more detail and provides recommendations as to which 
approach fits a particular need.

Regardless of the calculator used, for these tools to work effec-
tively and for scientists to have an accurate representation of their 
energy consumption, it is important to understand the power man-
agement for different components. For example, the power usage of  
processing cores such as central processing units (CPUs) and GPUs is 
not a readily available metric; instead, thermal design power (mean-
ing, how much heat the chip can be expected to dissipate in a nor-
mal setting) is used. Although an acceptable approximation, it has 
also been shown to substantially underestimate power usage in some 
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situations69. The efficiency of data centers is measured by the power 
usage effectiveness (PUE), which quantifies how much energy is needed 
for non-computing tasks, mainly cooling (efficient data centers have 
PUEs close to 1). This metric is widely used, with large cloud provid-
ers reporting low PUEs (for example, 1.11 for Google70 compared to a 
global average of 1.5771), but discrepancies in how it is calculated can 
limit PUE interpretation and thus its impact72–74. A standard from the 
International Organization for Standardization is trying to address 
this75. Unfortunately, the PUE of a particular data center, whether cloud 
or institutional, is rarely publicly documented. Thus, an important 
step is the data science and infrastructure community making both 
hardware and data centers’ energy consumption metrics available to 
their users and the public. Ultimately, tackling unnecessary carbon 
footprints will require transparency34.

Tackling energy and embodied impacts through new 
collaborations
Minimizing carbon intensity (meaning the carbon footprint of produc-
ing electricity) is one of the most immediately impactful ways to reduce 
GHG emissions. Carbon intensities depend largely on geographical 
location, with up to three orders of magnitude between the top and  
bottom performing high-income countries in terms of low carbon 
energies (from 0.10 gCO2e kWh−1 in Iceland to 770 gCO2e kWh−1 in  
Australia76). Changing the carbon intensity of a local state or national 
government is nearly always impractical as it would necessitate  
protracted campaigns to change energy policies. An alternative is 
to relocate computations to low-carbon settings and countries, but, 
depending on the type of facility or the sensitivity of the data, this may 
not always be possible. New inter-institutional cooperation may open up 
opportunities to enable access to low-carbon data centers in real time.

It is, however, essential to recognize and account for inequali-
ties between countries in terms of access to green energy sources. 
International cooperation is key to providing scientists from low- and 
middle-income countries (LMICs), who frequently only have high-
carbon-intensity options available to them, access to low-carbon com-
puting infrastructures for their work. In the longer term, international 
partnerships between organizations and nations can help build low-
carbon computing capacity in LMICs.

Furthermore, the footprint of user devices should not be forgot-
ten. In one estimate, the energy footprint of streaming a video to a 
laptop is mainly on the laptop (72%), with 23% used in transmission 
and a mere 5% at the data center77. Zero clients (user devices with no 
compute or storage capacity) can be used in some research use cases 
and drastically reduce the client-side footprint78.

It can be tempting to reduce the environmental impacts of com-
puting to electricity needs, as these are the easiest ones to estimate. 
However, water usage, ecological impacts and embodied carbon foot-
prints from manufacturing should also be addressed. For example,  
for personal hardware, such as laptops, 70–80% of the life-cycle impact 
of these devices comes from manufacturing only79, as it involves  
mining raw materials and assembling the different components, which 
require water and energy. Moreover, manufacturing often takes place 
in countries that have a higher carbon intensity for power generation 
and a slower transition to zero-carbon power80. Currently, hardware 
renewal policies, either for work computers or servers in data centers, 
are often closely dependent on warranties and financial costs, with 
environmental costs rarely considered. For hardware used in data 
centers, regular updates may be both financially and environmentally 
friendly, as efficiency gains may offset manufacturing impacts. Esti-
mating these environmental impacts will allow HPC teams to know 
for sure. Reconditioned and remanufactured laptops and servers 
are available, but growth of this sector is currently limited by nega-
tive consumer perception81. Major suppliers of hardware are making 
substantial commitments, such as 100% renewable energy supply by 
203082 or net zero by 205083.

Another key consideration is data storage. Scientific datasets are 
now measured in petabytes (PB). In genomics, the popular UK Biobank 
cohort84 is expected to reach 15 PB by 202585, and the first image of a 
black hole required the collection of 5 PB of data86. The carbon foot-
print of storing data depends on numerous factors, but based on some 
manufacturers’ estimations, the order of magnitude of the life-cycle 
footprint of storing 1 TB of data for a year is ~10 kg CO2e (refs. 87,88). 
This issue is exacerbated by the duplication of such datasets in order for 
each institution, and sometimes each research group, to have a copy. 
Centralized and collaborative computing resources (such as TREs) 
holding both data and computing hardware may help alleviate redun-
dant resources. TRE efforts in the UK span both health (for example, 
NHS Digital89) and administrative data (for example, the SAIL databank 
on the UK Secure Research Platform90 and the Office for National Sta-
tistics Secure Research Service91). Large (hyperscale) data centers are 
expected to be more energy-efficient92, but they may also encourage 
unnecessary increases in the scale of computing (rebound effect).

The importance of dedicated education and research efforts 
for ESCS
Education is essential to raise awareness with different stakeholders. 
In lieu of incorporating some aspects into more formal undergradu-
ate programs, integrating sustainability into computational training 
courses is a tangible first step toward reducing carbon footprints. An 
example is the ‘Green Computing’ Workshop on Education at the 2022 
conference on Intelligent Systems for Molecular Biology.

Investing in research that will catalyze innovation in the field of 
ESCS is a crucial role for funders and institutions to play. Although 
global data centers’ workloads have increased more than sixfold 
between 2010 and 2018, their total electricity usage has been approxi-
mately stable due to the use of power-efficient hardware93, but envi-
ronmentally sustainable investments will be needed to perpetuate 
this trend. Initiatives like Wellcome’s Research Sustainability project94, 
which look to highlight key gaps where investment could deliver the 
next generation of ESCS tools and technology, are key to ensuring that 
growth in energy demand beyond current efficiency trends can be 
managed in a sustainable way. Similarly, the UKRI Data and Analytics 
Research Environments UK program (DARE UK) needs to ensure that 
sustainability is a key evaluation criterion for funding and infrastruc-
ture investments for the next generation of TREs.

Recent studies found that the most widely used programming 
languages in research, such as R and Python95, tend to be the least 
energy-efficient ones96,97, and, although it is unlikely that forcing the 
community to switch to more efficient languages would benefit the 
environment in the short term (due to inefficient coding for example), 
this highlights the importance of having trained research software 
engineers within research groups to ensure that the algorithms used 
are efficiently implemented. There is also scope to use current tools 
more efficiently by better understanding and monitoring how coding 
choices impact carbon footprints. Algorithms also come with high 
memory requirements, sometimes using more energy than proces-
sors98. Unfortunately, memory power usage remains poorly optimized, 
as speed of access is almost always favored over energy efficiency99. 
Providing users and software engineers with the flexibility to opt for 
energy efficiency would present an opportunity for a reduction in 
GHG emissions100,101.

Cultural change
In parallel to the technological reductions in energy usage and car-
bon footprints, research practices will also need to change to avoid 
rebound effects38. Similar to the aviation industry, there is a tendency to 
count on technology to solve sustainability concerns without having to 
change usage102 (that is, waiting on computing to become zero-carbon 
rather than acting on how we use it). Cultural change in the computing 
community to reconsider how we think about computing costs will 
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be necessary. Research strategies at all levels will need to consider 
environmental impacts and corresponding approaches to carbon foot-
print minimization. The upcoming extension of the LEAF standard for 
computational laboratories will provide researchers with tangible 
tools to do so. Day to day, there is a need to solve trade-offs between 
the speed of computation, accuracy and GHG emissions, keeping in 
mind the goal of GHG reduction. These changes in scientific practices 
are challenging, but, importantly, there are synergies between open 
computational science and green computing103. For example, making 
code, data and models FAIR so that other scientists avoid unnecessary 
computations can increase the reach and impact of a project. FAIR 
practices can result in highly efficient code implementations, reduce 
the need to retrain models, and reduce unnecessary data generation/
storage, thus reducing the overall carbon footprint. As a result, green 
computing and FAIR practices may both stimulate innovation and 
reduce financial costs.

Moreover, computational science has downstream effects on 
carbon footprints in other areas. In the biomedical sciences, develop-
ments in machine learning and computer vision impact the speed and 
scale of medical imaging processing. Discoveries in health data science 
make their way to clinicians and patients through, for example, con-
nected devices. In each of these cases and many others, environmental 
impacts propagate through the whole digital health sector32. Yet, here 
too synergies exist. In many cases, such as telemedicine, there may be 
a net benefit in terms of both carbon and patient care, provided that 
all impacts have been carefully accounted for. These questions are 
beginning to be tackled in medicine, such as assessments of the envi-
ronmental impact of telehealth104 or studies into ways to sustainably 
handle large volumes of medical imaging data105. For the latter, NHS 
Digital (the UK’s national provider of information, data and IT systems 
for health and social care) has released guidelines to this effect106. 
Outside the biomedical field, there are immense but, so far, unrealized 
opportunities for similar efforts.

Conclusion
The computational sciences have an opportunity to lead the way in 
sustainability, which may be achieved through the GREENER principles 
for ESCS (Fig. 1): Governance, Responsibility, Estimation, Energy and 
embodied impacts, New collaborations, Education and Research. This 
will require more transparency on environmental impacts. Although 
some tools already exist to estimate carbon footprints, more specialized 
ones will be needed alongside a clearer understanding of the carbon 
footprint of hardware and facilities, as well as more systematic monitor-
ing and acknowledgment of carbon footprints. Measurement is a first 
step, followed by a reduction in GHG emissions. This can be achieved 
with better training and sensible policies for renewing hardware and 
storing data. Cooperation, open science and equitable access to low- 
carbon computing facilities will also be crucial107. Computing practices 
will need to adapt to include carbon footprints in cost–benefit analyses, 
as well as consider the environmental impacts of downstream applica-
tions. The development of sustainable solutions will need particularly 
careful consideration, as they frequently have the least benefit for  
populations, often in LMICs, who suffer the most from climate 
change22,108. All stakeholders have a role to play, from funding bodies, 
journals and institutions to HPC teams and early career researchers. 
There is now a window of time and an immense opportunity to trans-
form computational science into an exemplar of broad societal impact 
and sustainability.
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