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Abstract

Given a set of conflicting arguments, there can exist multiple plausible opinions about
which arguments should be accepted, rejected, or deemed undecided. We study the problem of
how multiple such judgments can be aggregated. We define the problem by adapting various
classical social-choice-theoretic properties for the argumentation domain. We show that while
argument-wise plurality voting satisfies many properties, it fails to guarantee the collective ra-
tionality of the outcome. We then present more general results, proving multiple impossibility
results on the existence of any good aggregation operator. After characterising the sufficient
and necessary conditions for satisfying collective rationality, we study whether restricting the
domain of argument-wise plurality voting to classical semantics allows us to escape the impos-
sibility result. We close by mentioning a couple of graph-theoretical restrictions under which
the argument-wise plurality rule does produce collectively rational outcomes. In addition to
identifying fundamental barriers to collective argument evaluation, our results contribute to
research at the intersection of the argumentation and computational social choice fields.
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1 Introduction
Argumentation has recently become one of the key approaches to automated reasoning and rational
interaction in Artificial Intelligence [5, 28]. A key milestone in the development of argumentation
in AI has been Dung’s landmark framework [15], known as abstract argumentation framework
(AAF). Arguments are viewed as abstract entities (a set A), with a binary defeat relation (denoted
⇀) over them. The defeat relation captures the fact that one argument somehow attacks or un-
dermines another. This view of argumentation enables high-level analysis while abstracting away
from the internal structure of individual arguments. In Dung’s approach, given a set of arguments
and a defeat relation, a rule specifies which arguments should be accepted.

Often, there are multiple reasonable ways in which an agent may evaluate a given argument
structure (e.g. accepting only conflict-free, self-defending sets of arguments). Each possible evalu-
ation corresponds to a so-called extension [15] or labelling [8, 9]. Different argumentation seman-
tics yield different restrictions on the possible extensions. Most previous research has focused on
evaluating and comparing different semantics based on the (objective) logical properties of their
extensions [3].

One of the essential properties, which is common, is the condition of admissibility: that
accepted arguments must not attack one another, and must defend themselves against counter-
arguments, by attacking them back. A stronger notion is called completeness, and is captured, in
terms of labelling, in the following two conditions:

1. An argument is labelled accepted (or in) if and only if all its defeaters are rejected (or out).

2. An argument is labelled rejected (or out) if and only if at least one of its defeaters is accepted
(or in).

Otherwise, an argument may be labelled undec. Thus, evaluating a set of arguments amounts
to labelling each argument using a labelling function L : A → {in, out, undec} to capture
these three possible labels. Any labelling that satisfies the above conditions is also called a legal
labelling. We will often use legal labelling and complete labelling interchangeably.

The above conditions attempt to evaluate arguments from a single point of view. Indeed, most
research on formal models of argumentation discounts the fact that argumentation takes place
among self-interested agents, who may have conflicting opinions and preferences over which ar-
guments end up being accepted, rejected, or undecided. Consider the following simple example.

Example 1 (A Murder Case). A murder case is under investigation. To start with, there is an
argument that the suspect should be presumed innocent (a3). However, there is evidence that he
may have been at the crime scene at the time (a2), which would counter the initial presumption
of innocence. There is also, however, evidence that the suspect was attending a party that day
(a1). Clearly, a1 and a2 are mutually defeating arguments since the suspect can only be in one
place at any given time. Hence, we have a set of arguments {a1, a2, a3} and a defeat relation ⇀=
{(a1, a2), (a2, a1), (a2, a3)}. There are three possible labellings that satisfy the above conditions:

• L(a1) = in, L(a2) = out, L(a3) = in.
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• L′(a1) = out, L′(a2) = in, L′(a3) = out.

• L′′(a1) = undec, L′′(a2) = undec, L′′(a3) = undec.

The graph and possible labellings are depicted in Figure 1.

a1 a2L a3

a1 a2L’ a3

a1: There is credible evidence 

that the suspect was at a party.

a2: A witness saw someone 

dressed like the suspect at 

the crime scene.

a3: The suspect is presumed 

innocent.

a1 a2L’’ a3
in out undec

Figure 1: Argument graph with three possible labellings

Example 1 highlights a situation in which multiple points of view can be taken, depending on
whether one decides to accept the argument that the suspect was at the party or the crime scene.
The question we explore in this paper can be highlighted through the following example, extending
Example 1.

Example 2 (Three Detectives). A team of three detectives, named 1, 2, and 3, have been assigned to
the murder case described in Example 1. Each detective’s judgment can only correspond to a legal
labelling (otherwise, her judgment can be discarded). Suppose that each detective’s judgment is
such that L1 = L, L2 = L′ and L3 = L′. That is, detectives 2 and 3 agree but differ with detective
1. These labellings are depicted in the labelled graph of Figure 2. The detectives must decide
which (aggregated) argument labelling best reflects their collective judgment.

L1 = 

in out

a1 a2 a3

1

L2 = 

2

a1 a2 a3

L3 = 

3

a1 a2 a3

Collective 

labelling?

a1: There is credible evidence 

that the suspect was at a party.

a2: A witness saw someone 

dressed like the suspect at 

the crime scene.

a3: The suspect is presumed 

innocent.

Figure 2: Three detectives with different judgments

Example 2 highlights an aggregation problem, similar to the problem of preference aggregation
[2, 16, 33] and the problem of judgment aggregation on propositional formulae [23, 20, 22, 19]. It
is perhaps obvious in this particular example that a3 must be rejected (and thus the defendant be
considered guilty), since most detectives seem to think so. For the same reason, a1 must be rejected
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and a2 must be accepted. Thus, labelling L′ (see Example 1) wins by majority. As we shall see
in our analysis below, things are not that simple, and counter-intuitive situations may arise. We
summarise the main question asked in the paper as follows.

Given a set of agents, each with a specific subjective evaluation (i.e. labelling) of a
given set of conflicting arguments, how can agents reach a collective decision on how
to evaluate those arguments?

While Arrow’s Impossibility Theorem can be expected to ensue for this problem [1],1 there ex-
ist many differences between labellings and preference relations (for which Arrow’s result apply),
stemming from their corresponding order-theoretic characterisations. In other words, aggregat-
ing preferences assumes that agents submit a full order of preferences over candidates, while in
labelling aggregation, agents submit their top labelling for a set of logically connected arguments.

The problem of labelling aggregation is more comparable to the judgment aggregation problem
[23, 20, 22, 19], by considering arguments as propositions which are logically connected by the
conditions of legal labelling. However, one important difference is that in judgment aggregation,
each proposition can have two values: True or False. In labelling aggregation, on the other hand,
each argument can have three values: in, out, or undec. This makes labelling aggregation be
more comparable to non-binary evaluations [13, 14]. Considering the general framework in [14],
our settings can be considered as focusing on special classes of feasible evaluations, which are the
conditions imposed by the legal labelling (or other semantics). Additionally, the possible evalua-
tions of each issue (argument, in our case) are to accept (labels as in), reject (labels as out), or be
undecided (labels as undec).

In this paper, we conduct an extensive social-choice-theoretic analysis of argument evaluation
semantics by means of labellings. We assume that individuals are presented with a shared argu-
mentation framework (AF) and need to make a decision about how to evaluate this AF. Individuals
are assumed to have different, but reasonable, evaluations. There can be many scenarios in which
such settings are present. For example, consider a jury members that are all provided with the same
information, each of them has a different opinion about these information and yet they all need to
come up with a collective decision. Another example is a company board committee who need to
make an informed decision. They can be all presented with the same information about the current
economic status and the possible strategies, each one of them has his/her own opinion about what
should be done, yet they all need to reach a collective decision.

The paper makes three distinct contributions to the state-of-the-art in the computational mod-
elling of argumentation. Firstly, the paper introduces the study of aggregating different individual
judgments on how a given set of arguments is to be evaluated.2 This requires adapting classical

1Arrow’s Theorem claims that four quite natural constraints, that capture abstractly the properties of a democratic
aggregation process, cannot be simultaneously satisfied.

2In fact, this idea was first introduced in [29] for which this paper is a substantially extended and revised version.
Section 6 which introduces the impossibility of good aggregation operator is significantly enhanced by adding three
impossibility results. Sections 8 and 9 are completely new. Section 10 contains more elaborate discussion of related
and future work. Finally, further explanation, motivation, discussion and background is added to the other sections to
improve clarity and presentation of the paper.
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social-choice properties to the argumentation domain, and sometimes demands special treatment
(e.g. different versions of some properties).

The second contribution of this paper is proving the impossibility of the existence of any aggre-
gation operator that satisfies some minimal properties. In doing so, we show impossibility results
that concern dealing with ties and producing a collectively rational evaluation of arguments. These
results establish the limits of aggregation in the context of argumentation, and come in accor-
dance with the impossibility results in the topics of aggregation such as preference aggregation
[1, 31, 25, 17, 30] and judgment aggregation [21]. Hence, as is the case with other aggregation
domains, the aggregation paradox in argument evaluation is an example of a more fundamental
barrier. These results are important because they give conclusive answers and focus research in
more constructive directions (e.g. weakening the desired properties in order to avoid the paradox).
Aiming to investigate possible relaxations in order to circumvent the impossibility in the context of
argumentation, we broke down the Collective Rationality postulate into sub-postulates. This helps
in taking a deeper look at the distinct parts of the postulate. As a consequence, satisfying any of
these parts can be used to weaken the collective rationality.

The third contribution of this paper is an extensive analysis of an aggregation rule, namely
argument-wise plurality rule. We analyse the properties of the argument-wise plurality rule in
general, and investigate whether the restriction of the domain of votes to a particular classical
semantics would ensure the fulfillment of these conditions. This highlights a novel use of classical
semantics, which are originally used to resolve issues in single-agent nonmonotonic reasoning.
Finally, we provide graph-theoretical restrictions on argumentation frameworks under which the
argument-wise plurality rule would be guaranteed to produce collectively rational outcomes.

The paper is organised as follows. In section 2, we start by giving a brief background on
abstract argumentation systems. Sections 3, 4, 6 and 7 focus on the problem of aggregating sets of
judgments over argument evaluation. Sections 5, 8, and 9 focus on introducing and analysing the
argument-wise plurality rule. We conclude the paper and discuss some related work in Section 10.

2 Background
In this section, we briefly outline key elements of abstract argumentation frameworks. We begin
with Dung’s abstract characterisation of an argumentation system [15]. We restrict ourselves to
finite sets of arguments.

Definition 1 (Argumentation framework). An argumentation framework is a pair AF = 〈A,⇀〉
where A is a finite set of arguments and ⇀⊆ A×A is a defeat relation. We say that an argument
a defeats an argument b if (a, b) ∈⇀ (sometimes written a ⇀ b).

For an argument a ∈ A, we use a− to denote the set of arguments that defeat a i.e. a− = {b ∈
A|b ⇀ a}.

An argumentation framework can be represented as a directed graph in which vertices are
arguments and directed arcs characterise defeat among arguments. An example argument graph is
shown in Figure 3. Argument a1 has two defeaters (i.e. counter-arguments) a2 and a4, which are
themselves defeated by arguments a3 and a5 respectively.
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a3 a2

a4

a1

a5

Figure 3: A simple argument graph

There are two approaches to define semantics that assess the acceptability of arguments. One
of them is extension-based semantics by Dung [15], which produces a set of arguments that are
accepted together. Another equivalent labelling-based semantics is proposed by Caminada [8, 9],
which gives a labelling for each argument. With argument labellings, we can accept arguments
(by labelling them as in), reject arguments (by labelling them as out), and abstain from deciding
whether to accept or reject (by labelling them as undec). Caminada [8, 9] established a correspon-
dence between properties of labellings and the different extensions. In this paper, we employ the
labelling approach.

Definition 2 (Argument Labelling). Let AF = 〈A,⇀〉 be an argumentation framework. An argu-
ment labelling is a total function L : A → {in, out, undec}.

We write in(L) (resp. out(L), undec(L)) for the set of arguments that are labelled in (resp.
out, undec) by L. A labelling L can be represented as L = (in(L),out(L),undec(L)).

However, labellings should follow some given conditions. A minimal reasonable condition is
the conflict-freeness.

Definition 3 (Conflict-freeness). A labellingL satisfies conflict-freeness iff ∀a, b ∈ in(L), ¬(a ⇀ b).

One of the essential semantics, which satisfies conflict-freeness is the complete semantics. We
already informally defined complete labellings via two conditions in the introduction. We find it
convenient to equivalently formulate it as three conditions as follows.

Definition 4 (Complete labelling). Let AF = 〈A,⇀〉 be an argumentation framework. A complete
labelling is a total function L : A → {in, out, undec} such that:

• ∀a ∈ A : if L(a) = in then ∀b ∈ A : (b ⇀ a⇒ L(b) = out);

• ∀a ∈ A : if L(a) = out then ∃b ∈ A s.t. (b ⇀ a ∧ L(b) = in); and

• ∀a ∈ A : if L(a) = undec then

– ∃b ∈ A : (b ⇀ a ∧ L(b) = undec); and

– 6 ∃b ∈ A : (b ⇀ a ∧ L(b) = in)

We will use Comp(AF ) to denote the set of all complete labellings for AF .

As an example, consider the following.

Example 3. Consider the graph in Figure 4. Here, we have three complete labellings: LG =
({a3}, {}, {a1, a2}), L1 = ({a1, a3}, {a2}, {}), and L2 = ({a2, a3}, {a1}, {}).
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a2 a1

a3

in out

L1

a2 a1

a3L2

a2 a1

a3LG

undec

Figure 4: Graph with three complete labellings.

In addition to the complete labelling, there are other semantics which assume further condi-
tions.

Definition 5 (Other Labelling Semantics). Let AF = 〈A,⇀〉 be an argumentation framework.
Let L : A → {in, out, undec} be a complete labelling.

• L is a grounded labelling if and only if in(L) is minimal, or equivalently out(L) is minimal,
or equivalently undec(L) is maximal (w.r.t set inclusion) among all complete labellings.

• L is a preferred labelling if and only if in(L) is maximal, or equivalently out(L) is maximal
(w.r.t set inclusion) among all complete labellings.

• L is a semi-stable labelling if and only if undec(L) is minimal (w.r.t set inclusion) among all
complete labellings.

• L is a stable labelling if and only if undec(L) = ∅.

Note that the grounded labelling is always unique, and stable labellings might not exist. Con-
sider the following example.

Example 4. Consider the graph in Figure 4. Here, we have the grounded labelling is LG =
({a3}, {}, {a1, a2}). We have only two preferred labellings: L1 = ({a1, a3}, {a2}, {}), and L2 =
({a2, a3}, {a1}, {}). These are also the only stable and semi-stable labellings for this framework.

Clearly, for any AF , Stab(AF ) ⊆ Semi(AF ) ⊆ Pref (AF ) ⊆ Comp(AF ), and Grnd(AF ) ⊆
Comp(AF ), where Stab(AF ), Semi(AF ), Pref (AF ), and Grnd(AF ) refer to the set of stable,
semi-stable, preferred, and grounded labellings for AF . We refer to the previous semantics as
classical semantics. There exist other semantics which we do not consider in this work.

3 Aggregation of Argument Labellings
To date, most analyses inspired by Dung’s framework have focused on analysing and comparing
the properties of various types of extensions/labellings (i.e. semantics) [3]. The question is, there-
fore, whether a particular type of labelling is appropriate for a particular type of reasoning task in
the presence of conflicting arguments.

In contrast with most existing work on Dung frameworks, our concern here is with multi-agent
systems. Since each labelling captures a particular rational point of view, we ask the following
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question: Given an argumentation framework and a set of agents, each with a legitimate subjective
evaluation of the given arguments, how can the agents reach a collective compromise on how to
evaluate those arguments?

Thus, the problem we face is that of judgment aggregation [21] in the context of argumentation
frameworks. This problem can be formulated as a set of individuals that collectively decide how
an argumentation framework AF = 〈A,⇀〉 must be labelled.

Definition 6 (Labelling aggregation problem). Let Ag = {1, . . . , n} be a finite non-empty set of
agents, and AF = 〈A,⇀〉 be an argumentation framework. A labelling aggregation problem is a
pair LAP = 〈Ag ,AF 〉.

Each individual i ∈ Ag has a labelling Li which expresses the evaluation of AF by this indi-
vidual. A labelling profile is an |Ag |-tuple of labellings.

Definition 7 (Labelling profile). Let LAP = 〈Ag ,AF 〉 be a labelling aggregation problem. We
use L = (L1, . . . , Ln) ∈ L(AF )|Ag| to denote a labelling profile, where L(AF ) is the class of
labellings of AF . Additionally, we use L(a) to denote the labelling profile (i.e. an |Ag |-tuple) of
an argument a ∈ A i.e. L(a) = (L1(a), . . . , Ln(a)).

The aggregation of individuals’ labellings can be defined as a partial function.3

Definition 8 (Aggregation function). Let LAP = 〈Ag ,AF 〉 be a labelling aggregation problem.
An aggregation function for LAP is a function F : L(AF )n → L(AF ).

For each a ∈ A, [F (L)](a) denotes the collective label assigned to a, if F is defined for
L = (L1, . . . , Ln).

4 Desirable Properties of Aggregation Operators
Aggregation involves comparing and assessing different points of view. There are, of course, many
ways of doing this, as extensively discussed in the literature of Social Choice Theory [16]. In this
literature, a consensus on some normative ideals has been reached, identifying what a ‘fair’ way
of adding up votes should be. So for instance, if everybody agrees, the outcome must reflect that
agreement; no single agent can impose her view on the aggregate; the aggregation should be per-
formed in the same way in each possible case, etc. These informal requirements can be formally
stated as properties that F should satisfy [21, 12]. In all of the following postulates, it is assumed
that a fixed labelling aggregation problem LAP = 〈Ag ,AF 〉 is given. The postulates can be
grouped as follows:4

Group 1: Domain and co-domain postulates

3We state that the function is partial to allow for cases in which collective judgment may be undefined (e.g. when
there is a tie in voting).

4This style of presentation of postulates was inspired by [18] which is on binary aggregation.
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In judgment aggregation, two postulates that are commonly assumed are those of Universal
Domain and Collective Rationality. The former requires that any profile of labellings chosen from
a pre-specified set of feasible labellings can be used as input to F and F will return an answer.
The question is: what do we take to be the set of feasible labellings in our setting? This depends
on which semantics we assume is being used. Theoretically we can have a different version of
Universal Domain for each semantics. However since complete semantics represent reasonable
and self-defending points of views, it represents the best counterpart for the logical consistency in
judgment aggregation:

Universal Domain F can take as input all profiles L = (L1, . . . , Ln) such that L ∈
Comp(AF )n

However, in Subsection 8.2 we will use other semantics as a domain for L.
Similarly we could have a different version of Collective Rationality - one for each semantics

- stating that the output of the aggregation should also be feasible. Again, since we focus on
complete semantics, we focus on the following version:

Collective Rationality For all profilesL such thatF (L) is defined, F (L) ∈ Comp(AF ).

Later, in Section 7, we will break this postulate down into further constituents.

Group 2: Fundamental postulates

Next we come to the standard property that forms the cornerstone of the usual impossibility
results in judgment aggregation. It says the collective label of an argument depends only on the
votes on that argument, independent of the other arguments.

Independence For any two profiles L = (L1, . . . , Ln), L′ = (L′1, . . . , L
′
n) such that

F (L) and F (L′) are defined, and for all a ∈ A, if Li(a) = L′i(a) for all i ∈ Ag , then
[F (L)](a) = [F (L′)](a).

The effect of Independence is that aggregation is done “argument-by-argument”. To be slightly
more precise, each argument a ∈ A essentially has its own aggregation operator Ia associated to
it, that takes an n-tuple of labels x = (l1, . . . , ln) as input (representing the “vote” of each agent
on the label of a) and returns another label Ia(x) as output (the “collective label”) of a. Then
[F (L)](a) = Ia((L1(a), . . . , Ln(a))). Note that the necessity of Independence is questionable in
our settings because of the dependencies between arguments that come already encoded in the
form of the attack relation. Nevertheless, it is usually investigated in the judgment aggregation and
preference aggregation literature because of its role in analysing strategy-proofness. Though the
relation between Independence and strategy-proofness is not established yet in our settings, our
task in this paper is to stick close to the methodology in judgment aggregation, and there it is often
assumed.

Next, we have Anonymity, which says the identity of which agent submits which labelling is
irrelevant.
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Anonymity For any profile L = (L1, . . . , Ln), if L′ = (Lρ(1), . . . , Lρ(n)) for some
permutation ρ on Ag , and F (L) and F (L′) are both defined, then F (L) = F (L′).

If we add Anonymity to Independence, then it means the outputs of the functions Ia described
above depend only on the number of votes that each label gets in x. Essentially it means Ia
outputs a collective label just taking as input the triple (#in,#out,#undec) of numbers denoting,
respectively, the number of votes for in, out and undec in x.

Proposition 1. LetF be an aggregation operator. ThenF satisfies both Independence and Anonymity
iff for each a ∈ A there exists a function Ia : N3 → {in, out, undec} such that, for all L we have
[F (L)](a) = Ia(#in,#out, #undec).

Outline. The “if” case is straightforward, since permuting the rows does not change the vote dis-
tribution and so Anonymity will hold. Independence is also clear.

For the “only if” case, Independence gives us the existence of the function Ia such that [F (L)](a) =
Ia(L1(a), . . . , Ln(a)) and then Anonymity implies that two vectors that have the same vote distri-
bution will give the same results, so we can set Ia(#in,#out,#undec) = Ia(L1(a), . . . , Ln(a))
where (L1(a), . . . , Ln(a)) is any vote which has (#in,#out,#undec) as its distribution.

A weakening of Anonymity is Non-Dictatorship:5

Non-Dictatorship There is no i ∈ Ag such that, for every profile L = (L1, . . . , Ln)
for which F (L) is defined, we have F (L) = Li.

Group 3: Unanimity postulates

Next we move to Unanimity, and some other postulates related to it.

Unanimity If L is such that F (L) is defined and there exists some L s.t. Li = L for
all i ∈ Ag , then F (L) = L.

This postulate is also familiar from judgment aggregation, but the move to 3-valued labellings
rather than the 2 usually seen in judgment aggregation opens up the possibility to define other
variants of Unanimity, one of which is used by Dokow and Holzman [14], called Supportiveness:

Supportiveness For any profile L such that F (L) is defined, and for all a ∈ A, there
exists i ∈ Ag such that [F (L)](a) = Li(a).

Supportiveness says that, for each argument a and label l, the collective judgment cannot be set to
l without at least one agent voting for that l. Clearly Supportiveness implies Unanimity.

It might seem natural to have the collective label of an argument as undec even when nobody
votes for it, if we interpret undec as a halfway label between in and out. Then if half the agents
say in and the other half says out then undec might be a reasonable compromise. Given this,
a weaker version of Supportiveness that only applies to in and out can be defined. We call it
in/out-Supportiveness.

5Since a violation of the latter would imply a violation of the former.
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in/out-Supportiveness For any profile L such that F (L) is defined, and for all a ∈
A, if [F (L)](a) 6= undec then there exists some agent i such that [F (L)](a) = Li(a).

Group 4: Systematicity postulates

Now we come to the Systematicity postulates which deal with neutrality issues across argu-
ments and labels. We can list two variants, both of which imply Independence. We start with the
stronger version:

Strong Systematicity For any two profiles L = (L1, . . . , Ln) and L′ = (L′1, . . . , L
′
n)

such that F (L) and F (L′) are defined, and for all a, b ∈ A, and for every permutation ρ
on the set of labels {in, out, undec}, if ∀i ∈ Ag :Li(a) = ρ(L′i(b)), then [F (L)](a) =
ρ([F (L′)](b)).

To illustrate Strong Systematicity, consider the example in Figure 5. We have the following
three labellings: L1 = ({a}, {b}, {}), L2 = ({b}, {a}, {}), L3 = ({}, {}, {a, b}).

a b

in out

L2

a b

L1

a b

L3

undec

Figure 5: An example illustrating Strong Systematicity.

Consider the profilesL = (L1, L1, L2, L3) andL′ = (L3, L3, L2, L1). Then,L(a) = (in, in, out, undec)
andL′(b) = (undec, undec, in, out). Let ρ be the permutation on labels such that ρ(in) = undec,
ρ(out) = in, and ρ(undec) = out. Then, we can see that in this example ∀i ∈ Ag : L′i(b) =
ρ(Li(a)). Strong Systematicity requires that [F (L′)](b) = ρ([F (L)](a)).
The postulate forces us to give an even-handed treatment to the labels in, out and undec (in addi-
tion to treating each argument independently and similarly). This makes sense if we consider in,
out and undec as three independent labels. However, one might be tempted to consider undec as
a middle label between in and out. Hence, the equal treatment might not be desirable in this case.
One might suggest a version of Systematicity that treats in and out equally. Following, we define
this version (which we call in/out-Systematicity).

in/out-Systematicity For any two profiles L = (L1, . . . , Ln) and L′ = (L′1, . . . , L
′
n)

such that F (L) and F (L′) are defined, and for all a, b ∈ A, and for every undec-
preserving permutation ρ on the set of labels {in, out, undec} (i.e. ρ(undec) = undec),
if ∀i ∈ Ag : Li(a) = ρ(L′i(b)), then [F (L)](a) = ρ([F (L′)](b)).
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in/out-Systematicity lies in the middle between Strong Systematicity and the following version of
Systematicity which can be obtained by restricting the class of permutations, until we only consider
the identity.

Weak Systematicity For any two profiles L = (L1, . . . , Ln) and L′ = (L′1, . . . , L
′
n)

such that F (L) and F (L′) are defined, and for all a, b ∈ A, if ∀i ∈ Ag : Li(a) = L′i(b),
then [F (L)](a) = [F (L′)](b).

Clearly Independence follows from Weak Systematicity by just setting a = b. If we strengthen
Independence to Weak Systematicity then the functions Ia, mentioned earlier, are identical for all
arguments.

Group 5: Monotonicity postulates

Our final group relates to Monotonicity.

Monotonicity Let la ∈ {in, out, undec} be such that given two profilesL = (L1, . . . , Li,
. . . , Li+k, . . . , Ln) and L′ = (L1, . . . , L

′
i, . . . , L

′
i+k, . . . , Ln) (differing only in the la-

bellings of agents i, i + 1, . . . , i + k) such that F (L) and F (L′) are defined, where
i ∈ {1, . . . , n} and k ∈ {0, . . . , n − i}, if Lj(a) 6= la while L′

j(a) = la for all
j ∈ {i, . . . , i+ k}, then [F (L)](a) = la implies that [F (L′)](a) = la.

Monotonicity states that if a set of agents switch their label of argument a to the collective label of
a then the collective label of a remains the same. Similar to Supportiveness and Systematicity, a
weaker version of Monotonicity that only apply to in and out can be defined. We call it in/out-
Monotonicity.

in/out-Monotonicity Let la ∈ {in, out} be such that given two profilesL = (L1, . . . , Li,
. . . , Li+k, . . . , Ln) and L′ = (L1, . . . , L

′
i, . . . , L

′
i+k, . . . , Ln) (differing only in the la-

bellings of agents i, i + 1, . . . , i + k) such that F (L) and F (L′) are defined, where
i ∈ {1, . . . , n} and k ∈ {0, . . . , n − i}, if Lj(a) 6= la while L′

j(a) = la for all
j ∈ {i, . . . , i+ k}, then [F (L)](a) = la implies that [F (L′)](a) = la.

5 The Argument-Wise Plurality Rule
An obvious candidate aggregation operator to check out is the plurality voting operator M . In this
section, we analyse a number of key properties of this operator. Intuitively, for each argument, it
selects the label that appears most frequently in the individual labellings.
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Definition 9 (Argument-Wise Plurality Rule (AWPR)). Let AF = 〈A,⇀〉 be an argumenta-
tion framework. Given any argument a ∈ A and any profile L = (L1, . . . , Ln), it holds that
[M(L)](a) = la ∈ {in, out, undec} iff

|{i : Li(a) = la}| > max
l′a 6=la
|{i : Li(a) = l′a}|

Note that M is defined for all profiles that cause no ties, i.e. M(L) is defined iff there does not
exist any argument a ∈ A for which we have at least two labels la and l′a with la 6= l′a and

|{i : Li(a) = la}| = |{i : Li(a) = l′a}| = max
l
|{i : Li(a) = l}|

One can directly notice that AWPR violates Universal Domain, because it is not defined for all
profiles in Comp(AF ).

Example 5 (Three Detectives (cont.)). Continuing on Example 2, applying the argument-wise plu-
rality rule, we have [M((L1, L2, L3))](a1) = out, [M((L1, L2, L3))](a2) = in, and [M((L1, L2, L3))](a3) =
out.

5.1 Properties of Argument-Wise Plurality Rule
We now analyse whether AWPR satisfies the properties listed above.

Proposition 2. The argument-wise plurality rule operatorM satisfies Supportiveness, Anonymity,
Strong Systematicity, and Monotonicity.

Proof. In this proof, the considered profiles are restricted to those for which [M(L)] is defined.

• Supportiveness: consider any profile L = (L1, . . . , Ln). Suppose, towards a contradiction,
that for some argument a, there exists no agent i such that Li(a) = la where la = [M(L)](a).
Then |{i : Li(a) = la}| = 0. But, |{i : Li(a) = la}| > maxl′a 6=la |{i : Li(a) = l′a}| > 0 (the
last inequality holds since Ag is non-empty). Contradiction.

• Anonymity: consider any profile L = (L1, . . . , Ln). [M(L)](a) = la if and only if |{i :
Li(a) = la}| > maxl′a 6=la |{i : Li(a) = l′a}| if and only if |{ρ(i) : Lρ(i)(a) = la}| >
maxl′a 6=la |{ρ(i) : Lρ(i)(a) = l′a}|, which is equivalent to
[M((Lρ(1), . . . , Lρ(i), . . . , Lρ(n)))](a) = la.

• Strong Systematicity: consider, for any two profilesL = (L1, . . . , Ln) andL′ = (L′1, . . . , L
′
n),

and for any a, b ∈ A, the permutation ρ : {in, out, undec} → {in, out, undec}. Sup-
pose, towards a contradiction, that for any i, Li(a) = ρ(L′i(b)), and [M(L)](a) = la but
ρ(M(L′)[b]) 6= ρ(la). But then,|{i : Li(a) = la}| = |{i : L

′
i(b) = ρ(la)}| while for any

l′a 6= la, |{i : Li(a) = l′a}| = |{i : L
′
i(b) = ρ(l′a)}|. So, if |{i : Li(a) = la}| > maxl′a 6=la |{i :

Li(a) = l′a}| then, we have |{i : L′
i(b) = ρ(la)}| > maxl′a 6=la |{i : L

′
i(b) = ρ(l′a)}| as well.

Contradiction.
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• Monotonicity: Consider the following two profiles L = (L1, . . . , Li, . . . , Li+k, . . . , Ln) and
L′ = (L1, . . . , L

′
i, . . . , L

′
i+k, . . . , Ln) (differing only in the labellings of agents i, i+1, . . . , i+

k) where i ∈ {1, . . . , n} and k ∈ {0, . . . , n− i}. Suppose, towards a contradiction, that for
a ∈ A and a label la we have that Lh(a) 6= la while L′

h(a) = la for all h ∈ {i, . . . , i + k},
and we have that [M(L)](a) = la while [M(L′)](a) 6= la. But then, |{j : Lj(a) = la}| >
maxl′a 6=la |{j : Lj(a) = l′a}| in the profile L while in the profile (L̂1, . . . , L̂n)≡L′, we have
{j : L̂j(a) = la} = {j : Lj(a) = la} ∪ {i, . . . , i + k} and {j : L̂j(a) = l′a} ⊆ {j : Lj(a) =
l′a} for every other labelling l′a. Then |{j : L̂j(a) = la}| > maxl′a 6=la |{j : L̂j(a) = l′a}|.
Contradiction.

Corollary 1. The argument-wise plurality rule operatorM satisfies Unanimity, Weak Systematic-
ity, Independence, and Non-Dictatorship.

Proof. Weak Systematicity and Independence follow from Strong Systematicity, Unanimity follows
from Supportiveness, and Non-Dictatorship follows from Anonymity.

Despite all these promising results, it turns out that plurality operator violates Universal Do-
main and Collective Rationality postulates. The violation of Universal Domain is because AWPR
is not defined for profiles that cause ties, which means that it cannot take as input every possible
profile L ∈ Comp(AF )n. However, a weaker version of Universal Domain can be defined.

No-Tie Universal Domain An aggregation operator F can take as input all profiles
L = (L1, . . . , Ln) such that L does not cause a tie and L ∈ Comp(AF )n.

Since there are no restrictions (other than having no ties) on how labellings are defined, AWPR
satisfies No-Tie Universal Domain. Note that one might be tempted to make AWPR satisfy Uni-
versal Domain by adding a deterministic6 tie-breaking rule to deal with ties. However, as we show
in the next section, the use of any tie-breaking rule would result in violating Anonymity, and/or
Strong Systematicity. While the violation of Universal Domain represents a minor inconvenience
that can be justified, the violation of Collective Rationality poses a serious issue as the collective
decision is usually expected to be reasonable. The following example shows how AWPR violates
Collective Rationality.

Example 6. Suppose argument c has two defeaters, a and b, and argument a (resp. b) defeats and
is defeated by argument a′ (resp. b′). Suppose we have 3 agents, with votes as shown in Figure 6.
We have [M(L)](c) = out, but it is not the case that [M(L)](a) = in or [M(L)](b) = in.

Interestingly, the above counterexample demonstrates a variant of the discursive dilemma [21]
in the context of argument evaluation, which itself is a variant of the well-known Condorcet para-
dox.

6The use of a non-deterministic tie-breaking rule has its own issues too, such as producing different outcomes
given the same profile.
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Figure 6: Counterexample to Collective Rationality

6 The Impossibility of Good Aggregation Operators
In the previous section, we analysed a particular judgment aggregation operator (namely, argument-
wise plurality rule). We showed that while it satisfies most key properties, it fails to satisfy Univer-
sal Domain and Collective Rationality. In this section, we show a couple of impossibility results
that involve these two postulates. The following result shows that introducing a tie-breaking rule
to satisfy Universal Domain would result in violating Anonymity and/or Strong Systematicity.

Theorem 1. There exists an argumentation framework AF such that, for any set of agents whose
cardinality is divisible by three, there exists no labelling aggregation operator satisfying Universal
Domain, Anonymity and Strong Systematicity.

Proof. It is enough to assume an AF that contains at least one argument a which can feasibly
take on any label, i.e. there exist complete labellings Lin, Lout and Lundec over AF such that
Lin(a) = in, Lout(a) = out and Lundec(a) = undec. Divide n agents into 3 groups G1, G2,
G3 of equal size. By Universal Domain, all profiles consisting of legal labellings are valid input.
Assume a profile in which everyone in G1 provides labelling Lin, everyone in G2 provides Lout

and everyone in G3 provides Lundec. For now let’s denote this profile by L = ([G1 : Lin], [G2 :
Lout], [G3 : Lundec]). Now, assume for contradiction that F is an aggregation operator for AF
satisfying Universal Domain, Anonymity and Strong Systematicity. Let ρ : {in, out, undec} →
{in, out, undec} be any permutation on the set of labels such that ρ(l) 6= l for all labels l (for
instance, ρ(in) = out, ρ(out) = undec, ρ(undec) = in), and let L′ denote the profile ([G1 :
Lρ(in)], [G2 : Lρ(out)], [G3 : Lρ(undec)]). Since L′i(a) = ρ(Li(a)) for all i ∈ Ag , Strong Systematicity
implies [F (L′)](a) = ρ([F (L)](a)). However, we chose ρ s.t. ρ(l) 6= l. Hence, [F (L′)](a) 6=
[F (L)](a). But Anonymity implies [F (L)](a) = [F (L′)](a). Contradiction. Hence no such F can
exist.

The previous result can be read in two ways: First, the AWPR cannot be made to satisfy
Universal Domain without violating Strong Systematicity or Anonymity. Second, there exists no
aggregation operator at all that satisfies Universal Domain, Strong Systematicity and Anonymity.

Note that the previous theorem was stated for a set of agents divisible by three. Essentially,
three-way ties would only happen if the cardinality of the agents is divisible by three (since there

15



are only three possible labels for each argument, and each individual has to submit one label for
each argument). Hence, one might wonder whether we could rule out the possibility of three-way
ties, by assuming n cannot be a multiple of three.7 However, with even number of agents, we can
show that there is still a large class of AF s which do not have an operator satisfying those three
postulates without violating Collective Rationality.

Theorem 2. There exists an argumentation framework AF such that, for any set of agents of even
cardinality, there exists no labelling aggregation operator satisfying Universal Domain, Anonymity,
Strong Systematicity and Collective Rationality.

Proof. It is enough to assume an AF that contains at least one argument a that can feasibly take on
just two out of the three possible labels. For concreteness suppose a can only take on labels out and
undec (An example of such a framework and an argument can be seen in the proof of Theorem 3
below, in which c can only be either out or undec). Let Lundec and Lout be two complete labellings
such that Lundec(a) = undec and Lout(a) = out. Divide the agents into two groups G1, G2 of
equal size. By Universal Domain, all profiles consisting of legal labellings are valid input, so
assume a profile in which everyone in G1 provides labelling Lundec and everyone in G2 provides
Lout. Denote the resulting profile by L = ([G1 : Lundec], [G2 : Lout]) and assume for contradiction
that F is an aggregation operator for this AF that satisfies Universal Domain, Anonymity, Strong
Systematicity and Collective Rationality. Let ρ be the permutation that swaps undec and out, i.e.,
ρ(undec) = out and ρ(out) = undec, and let L′ = ([G1 : Lout], [G2 : Lundec]).8 By Anonymity
we know [F (L)](a) = [F (L′)](a). Then it cannot be that [F (L)](a) = undec, for if so then Strong
Systematicity would imply [F (L′)](a) = ρ(undec) = out 6= [F (L)](a), and similarly it cannot
be that [F (L)](a) = out. Thus we must have [F (L)](a) = in. But by Collective Rationality
[F (L)](a) ∈ {undec, out}. Contradiction.

The careful reader can realise that Collective Rationality can be substituted with Supportive-
ness in the previous theorem. As for the proof, the last sentence becomes: “Thus we must have
[F (L)](a) = in. But by Supportiveness [F (L)](a) ∈ {undec, out}. Contradiction”.

However, one might argue that Strong Systematicity is quite a strong condition. Treating in,
out, and undec differently can be tolerated. Then, it is interesting to ask: “Does there exist an
operator that satisfies Universal Domain, Weak Systematicity, and Anonymity?”. The answer for
this question is positive. Consider a modified version of the AWPR that deals with ties by labelling
every argument that has a tie with undec. One can show that this operator satisfies these three
properties together. However, this operator still violates Collective Rationality (Example 6 holds
as a counterexample). In fact, we show that any operator that satisfies Universal Domain, Weak
Systematicity, and Anonymity, would violate either Collective Rationality or Unanimity.

7It was shown in [24] that Anonymity, Neutrality (a weaker version of Strong Systematicity) and Resolution can be
satisfied together if and only if the number of alternatives cannot be written as the sum of non-trivial dividers of the
number of voters. Resolute rules always produce a single outcome, so it resembles No-Tie Universal Domain. Also,
in our settings, the number of candidates is three. So this result says that we can have these postulates together if the
number of voters is not a multiple of three.

8Note here that all labellings in the profile L′ are still complete labellings. This is because ρ does not uniformly
exchange all labels in a given labelling, it is just a permutation on the set of labels.
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Theorem 3. There exists an argumentation framework AF such that, for any set of agents of
even cardinality, there exists no labelling aggregation operator satisfying Universal Domain, Weak
Systematicity, Anonymity, Collective Rationality, and Unanimity.

Proof. Consider the following argumentation framework. An argument c is defeated by two argu-
ments a and b which defeat each others.

c

b

a

in out undec

c

b

a

c

b

a

L L’ L’’

Consider the two labellings L = ({a}, {b, c}, {}) and L′ = ({b}, {a, c}, {}). Assume, to-
wards a contradiction, that there exists an aggregation operator F that satisfies Universal Domain,
Collective Rationality, Weak Systematicity, Anonymity and Unanimity.

By Universal Domain, we may consider any profile consisting of legal labellings. Consider
the two profiles L = (L, . . . , L, L′, . . . , L′) and L′ = (L′, . . . , L′, L, . . . , L). That is, in L half the
agents give L and the other half give L′, and then in L′ the agents switch from L to L′ and vice
versa.

By Unanimity we know
[F (L)](c) = out. (2a)

By Weak Systematicity we also know [F (L)](a) = [F (L′)](b). But since L and L′ are permutations
of each other we know F (L) = F (L′) by Anonymity and so we obtain

[F (L)](a) = [F (L)](b). (2b)

But there is no complete labelling simultaneously satisfying (2a) and (2b). Contradiction. Hence
no F can exist.

One might note that all of the above theorems exploit the use of profiles that include ties. Then,
one would ask: What if we relax Universal Domain to No-Tie Universal Domain? Do we still have
impossibility results then? Following, we show that an aggregation operator which satisfies No-Tie
Universal Domain (but not necessarily Universal Domain) cannot also satisfy Weak Systematicity,
Anonymity, Collective Rationality, and Supportiveness together.

Theorem 4. There exists an argumentation framework AF such that, for any set of agents whose
cardinality is divisible by three, there exists no labelling aggregation operator satisfying No-Tie
Universal Domain, Weak Systematicity, Anonymity, Collective Rationality, and Supportiveness.

Proof. Consider the following argumentation framework. An argument a is defeated by two argu-
ments b and c. Argument b (resp. c) defeats and is defeated by argument b′ (resp. c′).
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Consider the three labellings L1 = ({b, c′}, {a, b′, c}, {}), L2 = ({b′, c}, {a, b, c′}, {}) and
L3 = ({a, b′, c′}, {b, c}, {}).

Assume, towards a contradiction, that there exists an aggregation operator F that satisfies No-
Tie Universal Domain, Collective Rationality, Weak Systematicity, Anonymity and Supportiveness.

By No-Tie Universal Domain, we may consider any profile consisting of legal labellings as
long as it does not cause a tie. We consider here three agents, but the same proof can be shown
for any set of agents that is divisible by three. Consider the three profiles L = (L1, L2, L3),
L′ = (L′1, L

′
2, L

′
3) = (L3, L1, L2) and L′′ = (L′′1, L

′′
2, L

′′
3) = (L2, L3, L1).

Since ∀i, Li(a) = L′i(c), then by Weak Systematicity we know:

[F (L)](a) = [F (L′)](c) (3a)

But since L and L′ are permutations of each other we know [F (L)] = [F (L′)] by Anonymity
and so we obtain

[F (L)](c) = [F (L′)](c). (3b)

From Eq.3a and Eq.3b:

[F (L)](a) = [F (L)](c). (3c)

Similarly, since ∀i, Li(b) = L′′i (c), then by Weak Systematicity we know:

[F (L)](b) = [F (L′′)](c) (3d)

But since L and L′′ are permutations of each other we know [F (L)] = [F (L′′)] by Anonymity
and so we obtain

[F (L)](c) = [F (L′′)](c). (3e)

From Eq.3d and Eq.3e:

[F (L)](b) = [F (L)](c). (3f)

From Eq.3c and Eq.3f:

[F (L)](a) = [F (L)](b) = [F (L)](c). (3g)
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The last equation suggests that a, b, and c have the same collective labelling. However, by
Collective Rationality, the only legal labelling that satisfy Eq.3g is undec:

[F (L)](a) = [F (L)](b) = [F (L)](c) = undec. (3h)

However, F satisfies Supportiveness by assumption. Contradiction.

One can draw a connection between this result and the previous one. Relaxing Universal
Domain to No-Tie Universal Domain, introduces another impossibility result, in which Unanimity
is replaced with the stronger postulate Supportiveness. Additionally, one can compare this result
to the analogue of Arrow’s theorem in judgment aggregation [22], which involves Unanimity,
Independence, and Non-dictatorship, the weaker versions of Supportiveness, Weak Systematicity,
and Anonymity respectively in our theorem. However, their result also involves completeness, i.e.
no proposition can be collectively undecided, which we do not have as a condition in our result.

The above impossibility results highlight a major barrier to reaching good collective judgment
about argument evaluation in general. These establish the limits of aggregation in the context of
argumentation, and come in accordance with the similar topics of aggregation such as preference
aggregation [1] and judgment aggregation [21]. Unfortunately, there is no escape from violating
the involved conditions or accepting irrational aggregate argument labellings without somewhat
lowering our standards in terms of desirable criteria.

7 Collective Rationality Postulates
In this section, we characterise Collective Rationality in terms of conditions that need to be satisfied
by profiles. To do this, we need to go back to the definition of legal (i.e. complete) labelling (Def-
inition 4), and break it down into further constituents defined over the outcome of an aggregation
operator.

The following condition, which we call IN-Collective Rationality (IN-CR), requires that if
an argument a is collectively accepted by the agents, then the agents must collectively reject all
counter-arguments against a.

IN-Collective Rationality (IN-CR) For any profile L and a ∈ A, if [F (L)](a) = in

then:
@b ∈ A, s.t. (b ⇀ a ∧ [F (L)](b) = in) (IN-CR1)

and
@b ∈ A, s.t. (b ⇀ a ∧ [F (L)](b) = undec) (IN-CR2)

Note that IN-CR1, the first part of IN-CR, represents the the condition of conflict-freeness ap-
plied on the output. The condition of conflict-freeness is usually agreed on as a minimal reasonable
condition in argument evaluation.

We present now the OUT-Collective Rationality (OUT-CR) condition. Intuitively, this condi-
tion means that if an argument a is collectively rejected by the agents, then the agents must also
collectively agree on accepting at least one of the counter-arguments against a.
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OUT-Collective Rationality (OUT-CR) For any profile L and a ∈ A, if [F (L)](a) =
out then ∃b ∈ A, such that b ⇀ a and [F (L)](b) = in.

We present now the UNDEC-Collective Rationality (UNDEC-CR) condition. An argument must
be labelled undec if and only if: (i) it is not the case that all of its defeaters are out, that is, at least
one of its defeaters is undec; and (ii) none of its defeaters is in.

UNDEC-Collective Rationality (UNDEC-CR) For any profile L and a ∈ A, if
[F (L)](a) = undec then:

@b ∈ A, s.t. (b ⇀ a ∧ [F (L)](b) = in) (UNDEC-CR1)

and
∃b ∈ A, s.t. (b ⇀ a ∧ [F (L)](b) = undec) (UNDEC-CR2)

The following result follows immediately from the definitions.

Proposition 3. An argument aggregation operator F satisfies Collective Rationality if and only if
for each profile L = (L1, . . . , Ln) in its domain, it satisfies the IN-CR, OUT-CR, and UNDEC-CR
conditions.

8 Plurality Rule with Classical Semantics
In this section, we analyse the performance of AWPR with respect to Collective Rationality when
agents labellings are restricted to some classical semantics (i.e. complete, grounded, stable, semi-
stable, and preferred). This investigation gives a novel meaning to classical semantics in social
choice settings. Rather than simply being compared by their logical rigour from the perspective
of a single agent, semantics are compared based on the extent to which they facilitate collectively
rational agreement among agents.

Our strategy will be based on the following approach. Since, by Proposition 3, Collective
Rationality arises iff IN-CR, OUT-CR, and UNDEC-CR are satisfied, it is enough to check whether
AWPR satisfies those properties.

8.1 Complete Semantics
Since the complete semantics generalises other classical semantics, we provide analysis for it first.
Every property that is satisfied by AWPR when individuals’ labellings are complete labellings
would be also satisfied by AWPR when individuals’ labellings are restricted to the other classical
semantics that we consider.

It is very interesting to see that, as the proposition below shows, when agents collectively accept
an argument, the structure of the AWPR will ensure that they will not collectively accept any of its
defeaters:
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Proposition 4. AWPR satisfies IN-CR1. Using the argument-wise plurality rule, given any profile
L = (L1, . . . , Ln), if an argument a is collectively accepted, none of its defeaters will be collec-
tively accepted. Formally, if [M(L)](a) = in for some arbitrary a ∈ A then @b ∈ A, such that
b ⇀ a and [M(L)](b) = in.

Proof. Suppose that [M(L)](a) = in holds. By definition:

|{i : Li(a) = in}| > |{i : Li(a) = out}| (4a)

Since each Li is a legal labelling, an agent who votes in for a must also vote out for each defeater
of a. Therefore:

∀b ⇀ a |{i : Li(b) = out}| ≥ |{i : Li(a) = in}| (4b)

We want to show that: @b ∈ A such that b ⇀ a and [M(L)](b) = in

Assume (towards contradiction) that the contrary holds. That is, ∃b′ ∈ A such that b′ ⇀ a and
[M(L)](b′) = in. Then:

|{i : Li(b
′
) = in}| > |{i : Li(b

′
) = out}| (4c)

Since every agent who voted in for b′ would have voted out for a, we have:

|{i : Li(a) = out}| ≥ |{i : Li(b
′
) = in}| (4d)

By Eq.4c and Eq.4d:

|{i : Li(a) = out}| > |{i : Li(b
′
) = out}| (4e)

while from Eq.4b and Eq.4e we have that:

|{i : Li(a) = out}| > |{i : Li(a) = in}| (4f)

But this contradicts Eq.4a and the assumption that [M(L)](a) = in.

It is important to recognise that Proposition 4 is a non-trivial result. It shows that, with AWPR,
the postulate IN-CR1 is satisfied. This means, as we mentioned earlier, that AWPR satisfies the
“collective” version of conflict-freeness, a condition that is usually agreed on as a minimal reason-
able condition in argument evaluation. This comes “for free” as a result of the intrinsic structure
of the individual labellings, leading to coordinated votes. Note, however, that the IN-CR postulate
is not fully satisfied. Although Proposition 4 guarantees that a collectively accepted argument will
never have a collectively accepted defeater, it does not guarantee IN-CR2, that none of its defeaters
will be collectively undecided. This is demonstrated in the following remark.

Remark 1. AWPR violates IN-CR2. If an argument is collectively accepted, some of its defeaters
might be collectively undecided.

Proof. Suppose argument c has two defeaters, a and b. Suppose we have 7 agents, with votes as
shown in Figure 7. Clearly, while c is collectively accepted because [M(L)](c) = in, one of its
defeaters is not collectively rejected because [M(L)](b) = undec.
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Figure 7: Seven votes collectively accepting c, without collectively rejecting b

As we saw earlier in Example 6, OUT-CR is violated by AWPR.

Remark 2. AWPR violates OUT-CR. If an argument is collectively rejected, it is not guaranteed
that one of its defeaters will be collectively accepted.

Proof. See Example 6 for a counterexample.

The following remark shows that there are no intrinsic guarantees for satisfying UNDEC-CR1.

Remark 3. AWPR violates UNDEC-CR1. If an argument is collectively undecided, it is possible
that one of its defeaters will be collectively accepted.

Proof. Suppose argument c has two defeaters, a and b. Suppose we have 7 agents. Suppose
the votes are as shown in Figure 8. We have [M(L)](c) = undec with 4 votes, but we have
[M(L)](a) = in with 3 votes, thus violating the postulate.

a

in out undec

Agent 3-4Agent 1-2 Agent 5-7

a

Outcome

a' a'

b

b'

b

b'

c cc

a

a'

b

b'

c

b

b'

a

a'

Figure 8: Seven agents collectively undecided on c, but collective accepting a

Similarly, the remark below shows that UNDEC-CR2 is not intrinsically guaranteed.
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Remark 4. AWPR violates UNDEC-CR2. If an argument is collectively undecided, it is possible
that none of its defeaters will be collectively undecided.

Proof. Suppose argument c has two defeaters, a and b. Suppose we have 3 agents, with votes as
shown in Figure 9. Clearly, we have [M(L)](c) = undec, but we have [M(L)](a) = out and
[M(L)](b) = out, which would have required c to be in.

c

b

a

in out undec

b

a

c

a

Agent 2Agent 1 Agent 3

a

Outcome

a'a'

b' b'

a' a'

b

b'

b

b'

c c

Figure 9: Three votes collectively undecided about c, but not collectively undecided about any of its de-
featers a or b.

8.2 Other Classical Semantics
As we noted before, each possible complete labelling represents a valid self-defending viewpoint,
therefore restricting votes to complete labellings is akin to requiring that each vote in judgment
aggregation is consistent, or that each preference in preference aggregation is transitive and com-
plete. Other classical semantics are essentially restrictions (i.e. sub-cases) of complete semantics.
For example, restricting votes to preferred semantics requires each individual to be more commit-
ted, maximizing (w.r.t. set-inclusion) the set of accepted (or the set of rejected) arguments, while
restricting votes to semi-stable semantics requires each individual to be less conservative, mini-
mizing (w.r.t. set-inclusion) the set of arguments about which they are undecided. It is not clear, a
priori, what such requirements, applied on the individual, would have on the collective rationality
of the outcome of voting.

In this subsection, we provide an analysis for the grounded, stable, semi-stable, and preferred
semantics as more restricted forms of labellings to choose from. Note that the definition of Uni-
versal Domain, introduced earlier using complete semantics, is now redefined with respect to these
semantics, while the definition of Collective Rationality is unchanged.

The following proposition looks trivial but, as we will see, it is the most positive result in this
subsection.

Proposition 5. If for every argument, agents can only vote for the grounded labelling, then M
satisfies IN-CR1, IN-CR2, OUT-CR, UNDEC-CR1 and UNDEC-CR2. Equivalently, M satisfies
Collective Rationality.
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Proof. Trivial since there always exists one grounded labeling [15, 8], and M satisfies Unanimity.

As a corollary of Proposition 4, when agents votes are restricted to stable (respectively semi-
stable or preferred) labellings, AWPR satisfies IN-CR1.

Corollary 2. When agents can only vote for stable (respectively semi-stable or preferred) la-
bellings, AWPR satisfies IN-CR1

Proof. From Proposition 4, if agents can only vote for complete labellings, then AWPR satis-
fies IN-CR1. Since every stable (respectively semi-stable or preferred) labelling is a complete
labelling, then when agents votes are restricted to these semantics, AWPR satisfies IN-CR1.

Lemma 1. When agents can only vote for a stable labelling, AWPR satisfies IN-CR2. If an argu-
ment is collectively accepted, none of its defeaters is collectively undecided.

Proof. Suppose, towards a contradiction, that there exists an argument that is collectively accepted
and one of its defeaters is collectively undecided. Then, by Supportiveness, there exists one sub-
mitted labelling (by some agent) in which this argument is undecided. However, agents are only
allowed to submit a stable labelling, and stable labellings have no argument labelled undecided.
Contradiction.

Remark 5. When agents can only vote for stable (respectively semi-stable or preferred) labellings,
AWPR violates OUT-CR. If an argument is collectively rejected, it is possible that none of its
defeaters is collectively accepted.

Proof. See Example 6 for a counterexample.

Lemma 2. When agents can only vote for a stable labelling, AWPR satisfies UNDEC-CR (i.e. it
satisfies both UNDEC-CR1 and UNDEC-CR2). If an argument is collectively undecided, none of
its defeaters is collectively accepted, and at least one of its defeaters is collectively undecided.

Proof. Since in stable labelling no argument is labelled undecided, by Supportiveness, there is no
argument that is collectively undecided. Then, this lemma holds.

We continue with the semi-stable and preferred semantics.

Remark 6. When agents can only vote for a semi-stable (respectively preferred) labelling, AWPR
violates IN-CR2. If an argument is collectively accepted, it is possible that one of its defeaters is
collectively undecided.

Proof. Suppose argument c4 has two defeaters, a4 and c6. Suppose we have 7 agents, with votes
as shown in Figure 10. Clearly, while c4 is collectively accepted because [M(L)](c4) = in, one of
its defeaters, namely a4, is collectively undecided because [M(L)](a4) = undec.

Remark 7. When agents can only vote for a semi-stable (respectively preferred) labelling, AWPR
violates UNDEC-CR1. If an argument is collectively undecided, it is possible that one of its
defeaters is collectively accepted.
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Figure 10: A counterexample shows how, given semi-stable (respectively preferred) semantics, AWPR vio-
lates IN-CR2 and UNDEC-CR1.

Proof. Suppose argument d has two defeaters, c4 and c5. Suppose we have 7 agents, with votes as
shown in Figure 10. Clearly, while d is collectively undecided because [M(L)](d) = undec, one
of its defeaters, namely c4, is collectively accepted because [M(L)](c4) = in.

Remark 8. When agents can only vote for a semi-stable (respectively preferred) labelling, AWPR
violates UNDEC-CR2. If an argument is collectively undecided, it is possible that none of its
defeaters is collectively undecided.

Proof. Suppose argument c has two defeaters, a4 and b3. Suppose we have 3 agents, with votes as
shown in Figure 11. Clearly, while c is collectively undecided because [M(L)](c) = undec, none
of its defeaters is collectively undecided.

To sum up, the only restriction that would satisfy the Collective Rationality is the grounded
semantics (Proposition 5). This is trivially true because only one grounded labelling exists. How-
ever, stable semantics violates Collective Rationality only because it violates OUT-CR. As for the
semi-stable and preferred semantics, they only satisfy IN-CR1, a property they inherit from the
complete semantics. Refer to Table 1 for a summary of the results we have found.

9 Restricting the Domain of Argumentation Graphs to Satisfy
Collective Rationality

In an earlier section, we showed that, AWPR violates Universal Domain and Collective Rationality.
In this section, we investigate whether AWPR can satisfy Collective Rationality by restricting the
argumentation framework to graphs with certain graph-theoretical properties. We show that graphs
consisting of disconnected issues (a notion we define below) and graphs in which arguments have
limited defeaters (in some sense) guarantee collectively rational outcomes when the AWPR is used.
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Figure 11: A counterexample shows how, given semi-stable (respectively preferred) semantics, AWPR vio-
lates UNDEC-CR2.

Semantics IN-CR OUT-CR UNDEC-CR
IN-CR1 IN-CR2 UND-CR1 UND-CR2

Grounded Yes Yes Yes Yes Yes
(Prop. 5) (Prop. 5) (Prop. 5) (Prop. 5) (Prop. 5)

Stable Yes Yes No Yes Yes
(Cor. 2) (Lem. 1) (Rem. 5) (Lem. 2) (Lem. 2)

Semi-stable Yes No No No No
(Cor. 2) (Rem. 6) (Rem. 5) (Rem. 7) (Rem. 8)

Preferred Yes No No No No
(Cor. 2) (Rem. 6) (Rem. 5) (Rem. 7) (Rem. 8)

Complete Yes No No No No
(Prop. 4) (Rem. 1) (Rem. 2) (Rem. 3) (Rem. 4)

Table 1: The Collective Rationality properties that are satisfied/violated by AWPR given different semantics.

9.1 Disconnected Issues
The notion of “issue” was defined in [7] in order to quantify disagreement between graph la-
bellings. In this section, we use this notion to provide a possibility result.

Crucial to the definition of the “issue” is the concept of “in-sync”. Two arguments a and b are
said to be in-sync if the (complete) label of one cannot be changed without causing a change of
equal magnitude to the label of the other.

Definition 10 (in-Sync ≡ [7]). Let Comp(AF ) be the set of all complete labellings for argumen-
tation framework AF = 〈A,⇀〉. We say that two arguments a, b ∈ A are in-sync (a ≡ b):

a ≡ b iff (a ≡1 b ∨ a ≡2 b) (5)

where:

• a ≡1 b iff ∀L ∈ Comp(AF ) : L(a) = L(b).
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• a ≡2 b iff ∀L ∈ Comp(AF ) : (L(a) = in⇔ L(b) = out) ∧ (L(a) = out⇔ L(b) = in)

This relation forms an equivalence relation over the arguments, and the equivalence classes are
called “issues”.

Definition 11 (Issue [7]). Given the argumentation framework AF = 〈A,⇀〉, a set of arguments
B ⊆ A is called an issue iff it forms an equivalence class of the relation in-Sync (≡).

For example, in Figure 12, the graph consists of three issues, namely {a1}, {a2, a3}, and
{a4, a5}.

a3 a2

a4

a1

a5

Figure 12: An example about issues.

The following lemma is crucial in showing the main result of this subsection. We show that if
the defeaters of an argument belong to the same issue as the argument, then the collective labelling
of this argument chosen by AWPR is always a legal labelling.

Lemma 3. Let AF = 〈A,⇀〉 be an argumentation framework. Let a ∈ A be an argument in this
framework. If every defeater of a (call it b) belongs to the same issue of a (i.e. ∀b ∈ a−: b ≡ a),
then AWPR would always produce a legal collective labelling for argument a.

Proof. Let b1, . . . , bm ∈ A such that bj ∈ a− and a ≡ bj ∀j = 1, . . . ,m. Then, for every complete
labelling L:

L(a) = out⇔ L(b1) = in⇔ . . .⇔ L(bm) = in (6a)

L(a) = in⇔ L(b1) = out⇔ . . .⇔ L(bm) = out (6b)

L(a) = undec⇔ L(b1) = undec⇔ . . .⇔ L(bm) = undec (6c)

From Equations 6a, 6b, and 6c, for every labelling profile L = (L1, . . . , Ln):

|{i : Li(a) = out}| = |{i : Li(b1) = in}| = . . . = |{i : Li(bm) = in}| (6d)

|{i : Li(a) = in}| = |{i : Li(b1) = out}| = . . . = |{i : Li(bm) = out}| (6e)

|{i : Li(a) = undec}| = |{i : Li(b1) = undec}| = . . . = |{i : Li(bm) = undec}| (6f)

From Equations 6d, 6e, and 6f:

[M(L)](a) = out⇔ [M(L)](b1) = in⇔ . . .⇔ [M(L)](bm) = in (6g)

[M(L)](a) = in⇔ [M(L)](b1) = out⇔ . . .⇔ [M(L)](bm) = out (6h)

[M(L)](a) = undec⇔ [M(L)](b1) = undec⇔ . . .⇔ [M(L)](bm) = undec (6i)

From Equations 6g, 6h, and 6i, AWPR satisfies IN-CR, OUT-CR, and UNDEC-CR with respect
to a in this case. Then, a is always legally collectively labelled by AWPR if every defeater of it is
in the same issue as a.
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Given the previous lemma, we show that if the argumentation framework consists of a set of
disconnected issues, then AWPR satisfies Collective Rationality for this framework.

Theorem 5. For every AF = 〈A,⇀〉 that consists of a set of disconnected components (i.e.
disconnected subgraphs), each of which forms an issue, the argument-wise plurality rule would
always produce collectively rational outcomes.

Proof. Since AF consists of a set of disconnected issues, then ∀a ∈ A, a has the following
property: ∀b ∈ A such that b ∈ a− then b ≡ a. From Lemma 3, a is always legally collectively
labelled by AWPR. Then AWPR satisfies Collective Rationality for this AF .

This result shows that under argumentation frameworks that consist of disconnected issues,
AWPR always satisfies collective rationality. Indeed, as long as all arguments in every connected
component are “in-sync”, the labelling of one argument fully specifies the labelling of all those
connected to it. Then, one can think of these disconnected components/issues as a set of indepen-
dent propositions, and voting is done issue-wise.

9.2 Limited Defeaters
Now we move to another condition. It simply states that the defeaters of any argument are limited
by the flexibility of labelling of these defeaters. To illustrate the latter term, we use a concept
called the “justification status”, which is defined in [34]. Intuitively, the justification status of an
argument is the set of possible labellings that this argument can take.

Definition 12 (Justification Status [34]). Let AF = 〈A,⇀〉 be an argumentation framework,
and a ∈ A some argument. The justification status of a is the outcome yielded by the function
JS : A → 2{in,out,undec} such that JS(a) = {L(a)|L ∈ Comp(AF )}.

There are six possible justification statuses. Neither ∅ nor {in, out} is a possible justification
status. The former is because each argumentation framework has at least one complete labelling.
The later is because of the following theorem.

Theorem 6 ([34, Theorem 2]). Let AF = 〈A,⇀〉 be an argumentation framework, and a ∈ A
some argument. If AF has two complete labellings L1 and L2 such that L1(a) = in and L2(a) =
out, then there exists a labelling L3 such that L3(a) = undec.

The following lemma shows that an argument with one of its defeaters belong to the same issue
as long as all the other defeaters of this argument have the justification status of {out}.

Lemma 4. Let AF = 〈A,⇀〉 be an argumentation framework, and a, b ∈ A two arguments such
that b ⇀ a. If the following holds:

∀c 6= b : (c ⇀ a⇒ JS(c) = {out}) (7a)

Then a and b belong to the same issue (i.e. a ≡ b). Moreover, a is always legally collectively
labelled by AWPR.
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Proof. One can show that:
L(a) = out⇔ L(b) = in (7b)

L(a) = in⇔ L(b) = out (7c)

L(a) = undec⇔ L(b) = undec (7d)

Hence, a ≡ b.
Moreover, in a similar way to Lemma 3, one can show that, for every possible profile L =

(L1, . . . , Ln), the following holds:

• If [M(L)](a) = out then [M(L)](b) = in (b ∈ a−).

• If [M(L)](a) = in then [M(L)](b) = out, and by Unanimity, ∀c 6= b : (c ⇀ a ⇒
[M(L)](c) = out).

• If [M(L)](a) = undec then [M(L)](b) = undec (b ∈ a−), and by Supportiveness, ∀c 6= b :
(c ⇀ a⇒ [M(L)](c) 6= in).

Hence, a is always legally collectively labelled by AWPR.

Corollary 3. Let AF = 〈A,⇀〉 be an argumentation framework, and a ∈ A an argument. If
|a−| = 1 then a is always legally collectively labelled.

Proof. From Lemma 4, a is always legally collectively labelled by AWPR.

Now we present the main theorem for this subsection. It says if all arguments have limited
defeaters then AWPR always produces legally collective labellings. The limitation of the defeaters
is characterised in both their number and their justification statuses.

Theorem 7. Let AF = 〈A,⇀〉 be an argumentation framework. If each argument in A has at
most one defeater that can be labeled undec then AWPR satisfies Collective Rationality.

Proof. Suppose we have an AF = 〈A,⇀〉 s.t. each argument a ∈ A has at most one defeater
b ∈ a− s.t. undec ∈ JS(b). Then, using Theorem 6:

∀c 6= b : (c ⇀ a⇒ JS(c) = {in} ∨ JS(c) = {out})
Now for each argument a ∈ A, all defeaters c with JS(c) = {out} have no effect on the label

of a, so one can remove these defeaters. Additionally, if one of the defeaters c (other than b) has
JS(c) = {in}, then all other defeaters (including b) will also have no effect on the label of a, so
one can also remove those defeaters. As a result, for each argument a we will end up with one of
the following:

• a has only one defeater b and undec ∈ JS(b), or

• a has only one defeater c and JS(c) = {in}, or

• a has no defeaters

Note that in the last case, we would have JS(a) = {in}, and since AWPR satisfies Unanimity,
a would be legally collectively labeled in. As for the first two cases, using Corollary 3, a would
be legally collectively labelled.
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9.3 Relating the Two Restrictions
In this section, we proposed classes of argumentation frameworks that guarantee collective ratio-
nality for AWPR. Note that neither of the two classes (given in Theorems 5 and 7) is a generalisa-
tion or a special case of the other. Example 7 shows an AF that satisfies the condition in Theorem
5 (i.e. disconnected issues), but violates the condition in Theorem 7 (i.e. limited defeaters), while
Example 8 shows an AF that satisfies the condition in Theorem 7 (i.e. limited defeaters), but
violates the condition in Theorem 5 (i.e. disconnected issues).

Example 7. Note that the argumentation framework in Figure 13 satisfies the condition in Theorem
5. All the arguments a, b, c, d, and e are in the same issue, so this AF consists of disconnected
issues (only one issue in this case). However, this AF violates the condition in Theorem 7, since
argument a is defeated by two arguments b and c, each of these defeaters has a justification status
of {in, out, undec}, and so their justification statuses share undec.

e

b

c

ad

Figure 13: An AF that satisfies the condition in Theorem 5, but violates the condition in Theorem 7.

Example 8. Note that the argumentation framework in Figure 14 satisfies the condition in Theorem
7. The only argument that is defeated by more than one argument is argument a which has two
defeaters b and c. Moreover, undec /∈ JS(c), so undec /∈ JS(b) ∩ JS(c). However, this
AF violates the condition in Theorem 5, since it contains two connected issues. The first issue is
{a, b, d} and the second issue is {c, e}.

d b

c

a

e

Figure 14: An AF that satisfies the condition in Theorem 7, but violates the condition in Theorem 5.

Note that although the two proposed conditions can seem strong, constructing weaker condi-
tions is not an easy task. Consider the graph in Figure 6. It violates both conditions (it consist of
three connected issues {a, a′}, {b, b′} and {c}, and both defeaters of c i.e. a and b have undec in
their justification status). However, this framework is very close to frameworks that satisfy one of
the two conditions. For example, in the framework in Figure 6, if we remove the defeat b ⇀ b′

we get a graph similar to the one in Figure 14, which satisfies the limited defeaters condition. On
the other hand, if we remove the defeat b ⇀ c instead, we get a framework consisting of two
disconnected issues, namely {a, a′, c} and {b, b′}. This suggests the difficulty of finding weaker
conditions.
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10 Discussion
In this paper, we presented an extensive analysis of social-choice-theoretic aspects of Dung’s
highly-influential argumentation semantics. Argumentation-based semantics have mainly been
compared on the basis of how they deal with specific benchmark problems that reflect specific
logical structures from the point of view of a single omniscient observer (e.g. argument graph
structures with odd-cycles, floating defeaters etc.). Recently, it has been argued that argumentation
semantics must be evaluated based on more general intuitive principles [3]. Our work can be seen
as a contribution in this direction, focusing on issues relating to multi-agent preferences.

The closest work to the present paper is Caminada and Pigozzi [10]. In their work, they pro-
pose three aggregation operators, namely sceptical, credulous and super credulous. Although the
operators satisfy Collective Rationality, they violate Independence. These operators are also more
applicable to scenarios where the compatibility of the collective labelling with each individual’s
labelling is appreciated or needed. Argument-wise plurality rule, on the other hand, can be ap-
plied to classical scenarios where some individuals might naturally disagree with the opinion of
the group. Additionally, unlike our work, their work focuses on the proposed operators with only
little attention to the general aggregation problem. Only four postulates are proposed, namely
Universal Domain, Collective Rationality, Anonymity, and Independence, and there are no general
impossibility results that holds for any operator.

Our results on the aggregation of different argument evaluations by multiple agents provide
a new approach for conflict-resolution in multi-agent systems. While this work combines both
arguing and voting, two processes that employ different procedures, we assume these two processes
are done independently and by different groups of individuals. For example, a jury can vote on
the evaluation of arguments that were laid down by the lawyers of two opposing sides. Thus, the
arguing part, which happens between the lawyers occurs in an independent step before the voting
step, on which our analysis focuses.

Our results contribute to research on aggregation in the context of argumentation. The social
choice theoretic Arrovian properties have been analyzed in the context of social argument justi-
fication in [32]. An extended argumentation framework AF n = 〈A, ⇀1, . . . ,⇀n〉 is defined,
where each ⇀i, 1 ≤ i ≤ n, is a particular attack relation among the arguments in A, repre-
senting different attack criteria. Then, the authors define an aggregate argumentation framework
AF ∗ = 〈A, F(⇀1, . . . ,⇀n)〉, where F(⇀1, . . . ,⇀n) is an attack relation obtained by the aggre-
gation of the individual attack criteria ⇀1, . . . ,⇀n, via different kinds of mechanisms (e.g. ma-
jority voting, qualified voting and mechanisms that can be described by classes of decisive sets).
The aggregation of individual attack criteria can not be assimilated to the kind of mechanisms
proposed here. In [32] an individual may sanction an attack between two given arguments while
another individual may not, which in terms of labellings means that for the same pair of arguments
there may exist the following two labellings: (in, out) and (in, in). This is impossible in our
setting. Hence, the Arrovian properties (e.g. Collective Rationality) are conceived differently.

In [6] the authors analyse the problem of aggregating different individual argumentation frame-
works over a common set of arguments in order to obtain a unique socially justified set of argu-
ments. One of the procedures considered there is one in which each individual proposes a set of
justified arguments and then the aggregation leads to a unique set of socially justified arguments.
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The AWPR mechanism proposed here fits this procedure for the special case in which individually
justified arguments are simply the sets of arguments labelled in for each individual.

There is much work on using an individual agent’s preferences to help evaluate arguments (e.g.
based on given priorities over rules [26]). But this line of work does not address the preferences
of multiple agents and how they may be aggregated. In other related work, Bench-Capon [4]
associates arguments with values they promote or demote, and considers different audiences with
different preferences over those values. Such preferences determine whether particular defeats
among arguments succeed. Thus, one gets different argument graphs, one for each audience.
Bench-Capon uses this to distinguish between an argument’s subjective acceptance with respect
to a particular audience, and its objective acceptance in case it is acceptable with respect to all
possible audiences. Our work differs in two important ways. Firstly, in our framework, an agent
(or equivalently, an audience) does not have preferences over individual arguments, but rather
preferences over how to evaluate all arguments collectively (i.e. over labellings). Secondly, our
concern here is not with how individual agents (or audiences) accept an argument, but rather on
the possibility of achieving important social-choice properties in the final aggregated labelling.

In relation to aggregation, Coste-Marquis et al explored the problem of aggregating multiple
argumentation frameworks [11]. Each agent’s judgment consists of a different argument graph
altogether. This contrasts significantly with our work, in which agents do not dispute the argument
graph, but rather how it must be evaluated/labelled. Our setting is more akin to a jury situation, in
which all arguments have been presented by the prosecution and defense team, and are visible to
the jury members. The jury members themselves do not introduce new arguments, but are tasked
with aggregating their individual jugdgments about the arguments presented to them.

Finally, we refer to the work of Rahwan and Larson [27] on strategic behaviour when arguments
are distributed among agents, and where these agents may choose to show or hide arguments. Thus,
their interest is in how agents contribute to the construction of the argument graph itself, which is
then evaluated centrally by the mechanism (e.g. a judge). In contrast, our work is concerned with
how agents individually cast votes on how to evaluate each argument in a given fixed graph.

Our work opens new research problems for the computational social choice community. As
is the case with other aggregation domains, the aggregation paradox in argument evaluation is an
example of a fundamental barrier. Thus the impossibility results are important because they give
conclusive answers and focus research in more constructive directions (e.g. weakening the desired
properties in order to avoid the paradox). An algorithmic agenda would complement this research
by providing efficient algorithms for such problems. Strategic manipulation, by mis-reporting
one’s true vote, is also an important area of investigation, especially when such manipulations are
exercised by coalitions of agents.
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